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1 Notion de limite, relations de
comparaison entre fonctions

1.1 Limite d’une suite

Soit (uyp)n>0 une suite a valeurs réelles. La notion de limite d’une suite a été entrevue
au lycée. La définition précise suivante sera vue dans le cours d’Analyse 2 :

Définition 1.1. (a) Soit £ € R. On dit que (u,,) a pour limite ¢ lorsque n tend vers 400,
ou que (uy,) converge vers /¢, si :

VeeRY, InpeN, Vne N, n>nyg = |u, — ¥ <e.

(b) On dit que (u,) a pour limite +oco (resp. —oo) lorsque n tend vers +oo, ou que
(up,) diverge vers +oo (resp. —o0), si :

VM eR, Inge N, VneN, n>ny = u,>M
(resp. u, < M).

Exemple 1.2. (a) Voici des limites connues :

1
lim — =0; lim n® = 4o0; lim In(n) =+o0; lim e " =0.
n—4oo N n—-+oo n—-+oo n—-+4oo
(b) La suite (u,) définie par u, = (—1)" pour tout n n’a pas de limite lorsque n tend

vers +00 : elle diverge sans limite.

Remarque 1.3. Dans ce qui suit, lorsqu’on écrit : « hl}_l u, = £ », cela veut dire :
n—-roo

« la limite existe et est égale & £ ». Plus précisément, lorsqu’on écrit « lirf Un », cela
n—-r+oo

présuppose que la limite existe. Et pareillement pour les limites de fonctions.

1.2 Limite d’'une fonction

Dans ce cours, on s’intéressera a des fonctions f : D — R ot D est un intervalle de
R ou une réunion d’intervalles ! de R. Par ailleurs, on considére la droite réelle achevée :
R =RU{+00, —0cc}. Pour a € R, on dira que f est définie prés de a si a est un point de
D ou une borne de (I'un des intervalles qui forment) D.

On peut alors définir la notion de limite de f en a. Voici la définition précise, qui sera
vue aussi en cours d’Analyse 2 :

1. Lorsqu’on dit que f est définie sur un intervalle/une réunion d’intervalles, on sous-entend que cet
intervalle/chacun de ces intervalles est non vide et non réduit & un point.



1 Notion de limite, relations de comparaison entre fonctions

Définition 1.4. Soit a € R. Soit f : D — R une fonction définie prés de a. Soit £ € R.
ler cas : a = +00 :
(1.a) On dit que f a pour limite ¢ quand = tend vers +oo si

Ve >0, JAeR, VzeD, z>A = |f(z) -/ <e.
(1.b) On dit que f a pour limite 400 (resp. —o0) quand z tend vers 400 si :
VM eR, JAeR, VzeD, 2 >A = f(x)>M
(resp. f(x) < M).

2éme cas: a € R :
(2.a) On dit que f a pour limite ¢ quand = tend vers a si
Ve>0, dJa>0,VzeD, [zr—a|<a = |f(z)—{ <e.
(2.b) On dit que f a pour limite +oo (resp. —oo) quand z tend vers a si :
VM eR, 3a>0,VeeD, |[zx—a|<a = f(z)>M
(resp. f(z) < M).

Exercice 1.5. Etablir les limites lirf % =0et lim % = —oo a l’aide de la définition.
T—T100 z—0
x<0

Exemple 1.6. (a) Des limites de référence :

. . 400 sin est pair
VneN*, lim z" = +oo, lim z" =< . . bait,
T—+00 T——00 100 s1 n est 1mpair,

1 . 1 . . x
lim — = +o0, lim — =0, lim 7 = 400, lim e* = +oo,
z—0 T r——00 I T— 00 r— 400
x>0

lim e* =0, lim In(x) = 400, lim In(x) = —oc.

T——00 r—~+00 z—0

(b) Croissance comparée :

e* In(xz
VYn e N, lim — = +oo, lim (z) =0.
z—+oo L r—+oo I
¢) D’autres limites connues depuis le lycée
(c) p y
i r 1 |
i S0 g g, E 2 gy )
z—0 T z—0 X z—1x —1

Proposition 1.7 (Opérations sur les limites). On se donne deuz fonctions f et g ayant
comme limites € et 0, éléments de R, en a € R. Alors :
(a) f+g apourlimite L+ en a, sauf sil et ¢’ sont +oo et —oco (forme indéterminée).
(b) f X g a pour limite £ X £ en a, sauf si £ et {' sont oo et 0 (forme indéterminée).
(c) é a pour limite 3 en a, sauf si {' = 0 ; toutefois si limy—q g(z) = 0 et g(z) > 0
pour tout x (respectivement, g(x) < 0 pour tout x), alors lim,_,q ﬁ = 400 (resp.
. 1 _
lim,_.q ok —00).
Remarque 1.8. Pour décider de la limite de 5 on écrit *5 = fx é et on se sert des
points (b)—(c) de la proposition.



1.3 Lien entre limites des suites et limite d’une fonction

1.3 Lien entre limites des suites et limite d’'une fonction

Proposition 1.9. Soient a,/ € R et f : D — R une fonction définie prés de a. Les
conditions suivantes sont équivalentes :
(i) lim f(z)=¢.
r—a

(ii) Pour toute suite (uy,) a valeurs dans D telle que lim wuw, =aona lim f(u,)=~,.
n—+400 n—+400

La démonstration sera faite dans le cours d’Analyse 2. On n’utilisera que I'implication
(i)=>(ii), sous la forme du corollaire suivant :

Corollaire 1.10. S’il existe deux suites (uy) et (vy) @ valeurs dans D telles que liI_iI_l Up =
n—-roo

lim v, =a et lim f(u,)# lim f(v,), alors f n’a pas de limite en a.
n—-+o0o n—-+o0o n—-—+00

Exemple 1.11. En considérant les suites u,, = 2n7 et v,, = 2n7 + m, on prouve que cos
n’a pas de limite en +oo.

Exercice 1.12. Montrer que la fonction f : x +— sin% n’admet pas de limite en 0.

1.4 Relations de comparaison

On dira qu’une propriété est vraie sur un voisinage de a dans D, ou plus simplement
au voisinage de a (lorsque D = R, ou bien lorsque D est clair dans le contexte) si cette
propriété a lieu pour tout z € D suffisamment proche de a, c’est-a-dire :

e pour tout x € D dans un intervalle de la forme Ja — d;a + [ lorsque a € R,

e pour tout x € D dans un intervalle de la forme |A;+oo[, resp. | — oo; A[, lorsque

a = +00, resp. a = —00.

Exemple 1.13. La fonction In :]0; +00[— R est négative au voisinage de 0.

Définition 1.14. Soit a € R. Soient f,g: D — R deux fonctions définies prés de a.

(a) On dit que f est négligeable devant g en a et on note f = 0,(g) si, au voisinage de
a, on peut écrire f(z) = e(z)g(z) ou € est une fonction telle que lim,_., e(z) = 0.

(b) On dit que f est équivalente & g en a et on note f ~, g si, au voisinage de a, on
peut écrire f(z) = n(x)g(x) ot n est une fonction telle que lim,_,, n(x) = 1.

On a le critére pratique suivant :

Proposition 1.15. On suppose que la fonction g ne s’annule pas au voisinage de a sauf
éventuellement en a. Alors :
f(z)

a) f=o04(g9) si et seulement si lim ——= =0;
() f = o0a(g) tim
b ~q g st et seulement si lim M =1.
(b) f~ag
z—a g(x)
_ i)

Démonstration. On peut écrire f(x) x g(x) au voisinage de a, et dans chaque cas

g9(z)
la fonction z — ]gi(% a la limite requise en a pour qu’on puisse en déduire la relation de
comparaison souhaitée. O



1 Notion de limite, relations de comparaison entre fonctions

Exemple 1.16. (a) sin(x) ~g z; en effet, = ne s’annule pas au voisinage de 0, sauf en

0, et on connait la limite lin% sin(@) _ q,
€Tr—
(b) In(x) = 0400(x), car en effet lim In(z) _ .
z——+o0 T
(c) arctan(z) ~4 o0 5 ; plus généralement si lim f(z) = £ € R* alors f(x) ~q £.

r—a

Remarque 1.17. La relation "étre négligeable devant au voisinage de a" est une relation
transitive : si f = 04(g) et g = 04(h), alors f = 0,(h). La relation étre "équivalent a au
voisinage de a" est une relation d’équivalence (réflexive, transitive et symétrique).

Exercice* 1.18. Supposons f = 04(g) et g = 04(f). Montrer que f et g sont nulles sur
un voisinage de a.

Remarque 1.19. (1) Les mémes relations de comparaison peuvent étre définies dans le
cas des suites. Soient (U, )nen €t (vn)nen deux suites a valeurs réelles.
(a) On dit que (uy,) est négligeable devant (vy) si, a partir d'un certain rang, on a

Up = EnUp OU () est une suite telle que lirf gn, = 0. On note alors u, = o(vy,).
n—-+oo

(b) On dit que (uy,) est équivalente a (vy,) si, & partir d’un certain rang, on a u, = 1,y
ou (1) est une suite telle que lim 7, = 1. On note alors u,, ~ v,.

n—-+oo

(2) Comme dans le cas des fonctions, dans le cas ou la suite (vy) ne s’annule pas a
partir d’un certain rang, on a le critére plus simple :

(a) u, = o(vy) si et seulement si  lim In 0;
N—+00 Up,

(b) uy, ~ vy, si et seulement si lim — = 1.
n—-+oo Un

1 n2+4cos(n)

1
ﬁ)’ n3—7

(3) Par exemple, o o(

1
~ =,
n

1.5 Rappel sur la dérivabilité et notre premier DL

Soit f : I — R une fonction définie sur un intervalle et soit a € I. On dit que f
est continue en a si lim,_,, f(z) = f(a) (ce qui revient a dire, en fait, que lim,_, f(x)
existe ; cette limite est alors forcément égale & f(a)).

On dit que f est dérivable en a si la limite

f’(a) — lim f(:l:) — f(a)

r—a Tr —a

existe et appartient & R. Alors, dans un repére orthonormé du plan, la courbe représen-
tative Cy admet une tangente au point d’abscisse a, d’équation

y=[f(a)(@—a)+ f(a)
Posons ¢(x) = f(z) — [f'(a)(x — a) + f(a)]. On obtient

;OEEL = f(x; : i:(a) — f(a) =0 siz—a,




1.5 Rappel sur la dérivabilité et notre premier DL

donc ¢(z) = 04(x — a). On peut alors écrire :

f@) = f(a)+ f'(a)(z — a) + 0a(z — a).

Cette expression, qui montre dans quelle mesure f est approximée par la fonction affine
x+— f(a)+ f'(a)(x — a), est appelée développement limité de f en a a ordre 1.

L’objet du chapitre suivant est d’étendre la notion de développement limité pour des
ordres supérieurs, dans le but d’obtenir des approximations plus précises de f.






2 Développements limités

2.1 Définition et premiéres propriétés

2.1.1 Développement limité en un point
On considére une fonction f: D — R définie prés de a € R.

Définition 2.1. Soit n > 0 un entier naturel.
On dit que f admet un développement limité d’ordre n en a (on écrit DL,(a)), si il
existe des coefficients réels ag, aq,...,a, tels que la fonction

0:D =R, z— f(x)—[ao+ar(x—a)+ ...+ an(r —a)"]
vérifie :
371313}1 % =0 c’est-a-dire o(z) = 0q((x — a)™).
Autrement dit, f admet un DL, (a) si on peut écrire
f@)=as+ai(x—a)+ ...+ ap(z —a)" 4+ ¢(x)

ol ap,ai,. .., a, sont des réels et p(z) = o((z — a)™).
La fonction polynomiale z — Y )_ ag(z — a)¥ est appelée la partie régulicre du déve-
loppement limité.

Remarque 2.2. Si f admet un DL,(a), alors a fortiori f admet un DL (a) pour tout
ordre k < n, dont la partie réguliére s’obtient en "tronquant" au degré k la partie réguliére
du DL,. On peut écrire en effet

f@)=ao+ai(x—a)+...+ar(z fa)k + ag11(z — a)k+1 +.ootap(z—a)" + p(x).

=oa((z—a)")

Rien ne dit en revanche que f admettra un DL,,(a) pour m > n.

Un développement limité permet d’approximer une fonction f par une fonction poly-
nomiale (=la partie réguliére du développement limité), au voisinage d’un point. Plus
Iordre est élevé, plus 'approximation sera précise.

Exemple 2.3. (a) Comme vu a la fin du chapitre précédent, si f est dérivable en a,
alors f admet un DL (a) :

f(z) = f(a) + f'(a)(z — a) + oa((z — a)");

les coefficients de ce développement limité sont donc ag = f(a) et a3 = f'(a).
D’ou des exemples de DL1(0) :

11



2 Développements limités

e sin(x) = sin(0) + sin’(0) x z + o(z) = = + o(z),
e cos(z) =1+ o(x),
e exp(z) =1+ z+ o(z).
Un exemple de DL;(1) :
e In(z) =In(1) +In'(1) x (x — 1)+ o((zx — 1)) = (x — 1) + o((z — 1)).
(b) Si f est une fonction polynomiale de degré < n

fla) = apa"
k=0

alors f admet un DL, (0) de partie réguliere Reg,, (f;0) = f.
Plus généralement, quel que soit a € R, on peut encore écrire f sous la forme

fx)=by+bi(z—a)+...+by(xz—a)"

avec d’autres coefficients by, . .., b, (car les monémes  +— (z —a)*, k = 0,...,n forment
une base de l’espace vectoriel des fonctions polynomiales de degré < n), et cette écriture

indique que f admet un DL, (a) quel que soit a.
. . 1 . N
(c) Soit f: R\ {1} — R, 2 + 1. Pour tout entier naturel n > 0, on connait la
formule
1 — gntl

n

Zxk =-—1_, Dpour tout z € R\ {1},
-z

k=0

qui permet alors d’écrire

1 - k n T

Comme lir% 1 = 0, cette écriture montre que f admet, pour tout rang n > 0, un

r—

DL, (0) de partie réguliere > p_, z*.

Exercice 2.4. (a) Montrer que, si f admet un DL, (a) de rang n > 0, alors lim f(z) = ao

r—a
(le coefficient constant du développement limité).

(b) Supposons f continue en a. Montrer que, si f admet un DL, (a) avec n > 1, alors f
est dérivable en a de nombre dérivé f'(a) = a1 (le coefficient de degré 1 du développement
limiteé).

Cet exercice commence & suggérer que les coefficients d’un développement limité, s’il
existe, sont uniquement caractérisés. Cela est dit plus précisément par la proposition
suivante.

Proposition 2.5. Si f admet un DL,(a), alors il est unique. Plus précisément, si on a
deur développements limités :

f@)=a+ai(z—a)+...4ap(z—a)"+p(x) =by+bi(x—a)+...+by(z—a)" +¢(x)

alors ay = by, pour tout k =0,1,...,n, et p = 1.

12



2.1 Définition et premiéres propriétés
Démonstration. Supposons par absurde qu'il existe k € {0,...,n} tel que ap = b, et
notons par kg le plus petit k vérifiant cela. On a alors pour tout x € D :

ag+ ...+ ag,_1(z — a)ko*l + ag, (x — a)ko +...tap(z—a)" + ¢(x)
= ap+ ... +ap_1(x—a)* "t f by (x—a)* .. Fby(z—a)" +Y(x)

donc

gy (x—a) 4. tan(z—a)"+(x—a)"dp(x) = by, (x—a)* +. . . +by(x—a)"+ (x—a)"P(z).
En divisant par (z — a)*® on obtient pour tout = # a :

Uy + A an(z—a)"F 4 (2 —a)"(x) = by F .. A bp(z— )" 4 (2 —a) T ROp(2).

En passant a la limite lorsque z — a, il suit : ag, = by,, une contradiction. ]

2.1.2 Cas des fonctions paires / impaires

Exemple 2.6. (a) On rappelle le DL;(0) : sin(y) = y + ¢(y) ou ¢(y) = o(y).
(b) On en déduit un DLy(0) de cos : pour tout = € R, on écrit

cos(x) = cos (2 X g) =1 — 2sin? (g) =1- 2[% + @(%)]2
= 1- %xz + {2xcp<§> + 2@(%)2} =1- %:):2 +Y(x)
P(x)
ou }:li% % = lim [% + %(%)Q] = 0. On a donc obtenu un DLy(0) de cos.

Exercice 2.7. (a) Justifier les encadrements suivants :

3 3

Ve € Ry, m—%ﬁsin(w)gx et VoxelR_, xgsin(x)gx—%

(on pourra faire une étude de fonctions) et en déduire le DLy (0) : sin(z) = = + o(z?).
2

(b) En déduire le DL3(0) : cos(z) = 1 — % +o(z?).

(On aura besoin d’une méthode plus systématique pour trouver un DL,(a) d’une
fonction donnée, pour n > 2.)

Voici une propriété vérifiée en particulier par les développements limités ci-dessus des
fonctions sin et cos. Attention : elle n’est valide que pour un développement limité en 0.

Proposition 2.8. Soit f: D — R une fonction définie sur un ensemble symétrique (i.e.
x € D= —x € D) contenant 0, et on suppose que f admet un DL, (0) :

fl@)=ag+ar1x+ ...+ apz" 4+ ¢(x).

Si f est paire alors on a ar = 0 pour tout k impair. Si f est impaire alors on a ap =0
pour tout k pair.

13



2 Développements limités

Démonstration. Lorsque f est paire, on écrit
n

f(z) = f(—z) = ap — a1x + agx® — ... + (=1)"apz" + o(—z) = Z(—l)kakxk + o(—x)
k=0

et on a lim p(=2) = lim(—l)"w
z—0 z" z—0 (—x n

DL, (0) de f. L’unicité du développement limité (Proposition 2.5) entraine alors 1’égalité
ap = (—1)*a;, pour tout entier k compris entre 0 et n, donc aj = 0 pour tout tel entier
impair.

Lorsque f est impaire, le raisonnement est similaire en écrivant f(z) = —f(—z). O

= 0, donc la formule ci-dessus est un second

2.1.3 Se ramener a un développement limité en 0

Pour chercher un DL, (a) d'une fonction f, il suffit de chercher un DL, (0) de la
fonction (h +— f(a+ h)).

Exemple 2.9. (a) On cherche un DL3(2) de la fonction inverse f : z — 2. Pour cela
"on pose x = 2+ h", autrement dit on cherche un DL3(0) de la fonction h — On
écrit :

1
2+h"

On utilise le DL3(0) déja vu :

1
—— =1+y+ P+ v’ +ey)

Ly
et on remplace y par —% :
1 1 2 3
srn = gt (/2 +(=h/2)7+ (=h/2)" + o(=h/2))
1 h h®2 B3
= §—Z+§—E+¢()
ot Y(h) = 3p(—h/2) vérifie %m%) }Eh) = 0. D’ou finalement
1 1 z-2 (z-2? (z-2)3 -
2T 1 s 1 YW

ou 1/;(35) = Y(x — 2) vérifie hm (?/1(9;;3 =

(b) En raisonnant de méme, on trouve un DL, (a) de la fonction inverse en tout point
a € R\ {0}, pour tout ordre n > 0 :

1 1 = p hF = (x—a)k -
T a+h :Z(_l) s +y(h Z T +1(x)
k=0 k=0
o oy = oy

14



2.2 Opérations sur les développements limités

2.2 Opérations sur les développements limités

2.2.1 Combinaison linéaire

Proposition 2.10. Soient f,g: D — R deux fonctions qui admettent un DL, (a). Soit
A € R un scalaire. Alors \f + g admet un DLy(a), dont la partie réguliére s’obtient en
faisant la combinaison linéaire des parties réguliéres des développements de f et de g.

Démonstration. On écrit :

flx)=ap+ar(z—a)+...+an(x—a)"+(x —a)"¢(z) ou lim ¢(z) =0

r—a

reg(f):=partie réguliére de f
g(x)=by+bi(x—a)+ ...+ by(x—a)" +(x —a)"¢Y(z) on limp(x)=0

r—a

-~

reg(g):=partie réguliére de g

de sorte que :

n

M (@) +g(@) =Y (hai + b)) (@ — a)' + ( — a)" (Ad(@) + P()) -

= —ou((@—a)")
Areg(f)+reg(g)
O
Exemple 2.11. On a les DLy(0) : == = x + 22 + o(2?) et sin(z) = z + o(2?) donc
= —sin(z) = 2% + o(2?), ce qui entraine par ailleurs —1- — sin(z) ~g 2°.
2.2.2 Produit

Lemme 2.12 (Reégles de calcul). Soient k,¢ > 0 deuz entiers et a € R.
(a) Sig(z) = 0a((x — a)*) alors (z — a)kg(z) = 0a((x — a)**?).
(b) Si f(@) = 0al(x — a)¥) et g(x) = 0u((w — a)t) alors f(@)g(x) = o0ul(x — a)<*+).

Autrement dit,
(z—a)* % 0a((x—0a)") = 0a((z—a)**) et 04((x—0a)¥) x 0u((2—a)") = 0q((x—a)**+?).

Nk
Démonstration.  (a) (z = a)g() = 9(x) —0siz—a.

(x — a)ktt (x —a)t
f@)g(z) — [f(z) g9(z)

(b) (@ — o)~ (z—a)k X (x_a)£—>0sia:—>a.

En utilisant ces régles de calcul, et une distributivité, on obtient I’énoncé suivant :

Proposition 2.13. Si f,g : D — R admettent un DL,(a), alors la fonction produit
fg aussi, de plus la partie réguliére du DL, (a) de fg s’obtient en faisant le produit des
parties réqulieres des DL, (a) de f et de g, et en tronquant au degré n.
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2 Développements limités

Exemple 2.14. (a) Soit f(z) = sin(z) et g(x) = 1. On a les DLy(0) : % = = +

1—x
22 +o(z?) et sin(x) = x4+ o(2?). En appliquant la proposition, on obtient que la fonction
x %Sf) admet un DLy(0) dont la partie réguliére s’obtient en tronquant (z+2%)xz =

22 4 23 au degré 2, ot &) — 52 4 o(x?).

(b) On peut aussi retrouver le résultat du point précédent en faisant le calcul directe-
ment :

xsin(z)

S = o xsine) = (w4 a® +o(@?) (@ + o(a?)

= 22 + 2% + 20(2?) + wo(x?) + o(z?)o(2?)

=o(z3)

On en déduit en particulier la formule de (a) : = 2% + o(z?). Mais notre résultat
est plus précis, c¢’est un D L3(0).

(c) On connait les DL2(0) : sin(x) = = + o(2?) et cos(x) = 1 — %2 + o(x?). D’aprés la
proposition, x +— sin(z) cos(z) a un DLy(0) de partie réguliére z. Voyons si on obtient
mieux en faisant le calcul directement :

22
sina) x cos(a) = (2+0(a?)(1 2 +o(a?)
23
= 2Tt role®) + ofa?) - 3ol
= x+o(2?). o

Dans cet exemple, le résultat de la proposition est optimal.

Remarque : la partie (b) de 'exemple montre qu’en effectuant le calcul directement, on
peut obtenir un résultat plus précis que celui indiqué par la proposition. C’est pourquoi,
en pratique, on n’applique pas nécessairement la proposition mais on peut opter pour un
calcul direct. On peut néanmoins établir aussi un résultat théorique plus précis. Il est
basé sur la définition suivante :

Définition 2.15. Soit f une fonction admettant un DL, (a) de partie réguliére non
nulle :

fx)=ap+ar(z—a)+...+an(x—a)" + (x —a)"¢(x) avec lim ¢(z)=0.

r—a

En notant par k € {0,...,n} le premier indice tel que aj # 0, on peut écrire :

flx)=(z— a)k ar + apy1(x —a)+ ... +ap(x —a)" + (x — a)”_k(b(:c) )
oa((z—a)r=F)

Cette écriture est appelée forme normale du DL, (a) de f.
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2.2 Opérations sur les développements limités

Proposition 2.16. Supposons que f et g ont respectivement un DLyp,(a) et un DLy, (a)
de formes normales suivantes :

f(@) = (@=a)* | D alx — a)f +ou((w—a)?)], g(z) = (@=a)! | 3 bl — @)l +ou((w—a)?)] .

=0 =0

reg’(f) reg’(g)

Alors fg a un DLyy¢yp(a) de forme normale
Folw) = (@ — @) [P@) + 0a((z — a)?)

ot P(x) s’obtient en effectuant le produit reg'(f) x reg/(g) et en tronquant au degré p.

Exemple 2.17. Reprenons I'Exemple 2.14 (b). On a les formes normales suivantes :

25 = a(1+ 2+ o(x)) et sin(x) = 2(1 + o(x)). Donc L = 22(1 4z + o(x)), d'ott on
z3).

retrouve le DL3(0) : %ﬂ =22 + 2% + of
2.2.3 Composition

On ajoute une régle de calcul :

Lemme 2.18 (Reégle de calcul 2). Si f(z) ~q Ag(z), ot A est un scalaire non nul, et
h(z) = 04(f(x)), alors h(x) = 04(g(x)). Autrement dit,

f(l:) ~a g(IL’) = Oa(f) = Oa(g)‘
Démonstration. Les hypothéses permettent d’écrire, au voisinage de a :

f(x) =n(x)Ag(x) et h(x)=ce(x)g(z) avec lime(x)=0, limn(z)=1.

r—a r—a

D’ou :
h(z) = Xe(x)n(x) f(x) avec lim Ae(z)n(z) =0

r—a

ce qui entraine la conclusion. ]

Cette régle permet, par exemple, de simplifier une expression, en remplacant une ex-
pression du type

0 <<%x + 322 + o(a:2))3> par o(z?).

En se basant sur cette régle de calcul, on obtient :

Proposition 2.19. Soient f : D — R et g : E — R deux fonctions telles que f(D) C E
de sorte que la composition go f : D — R, x — g(f(x)) est bien définie. De plus on
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2 Développements limités

suppose [ définie prés de a € R, g définie prés de b € R, et que f et g ont respectivement
un DLy(a) et un DL,(b) de la forme suivante :

flz)=ao+ai(e—a)+... +an(z —a)" +o((z — a)")
reg(f)
g(y) =bo+bi(y —b) + ...+ bu(y — )" +o((y — 0)").

~~

reg(g)
Alors g o f a un DLp(a), dont la forme régulicre s’obtient en composant les formes
réqulieres des deux développements : reg(g) oreg(f), et en tronquant au degré n.
Exemple 2.20. (a) La composition In o cos est bien définie, sur I'intervalle D =] — 7, Z[.
Nous connaissons déja le DL2(0) de la fonction cos : cos(x) = 1 — %2 + o(z?). Nous
a . A . -1 2
connaitrons bientot le DLs(1) de la fonction In : In(y) = (y — 1) — % +o((y — 1)?).

D’aprés la proposition, Inocos a un DL2(0) de partie réguliére obtenue en tronquant au
degré 2 la composition des parties réguliéres

[(1_96_2)_1] - (1-%) _1}2
2 2
ce qui donne )

In(cos(x)) = —% + o(z?).

(b) En pratique, au lieu d’appliquer la proposition, on préfére effectuer le calcul direc-
tement (en utilisant les régles de calculs des lemmes précédents), dans I'exemple ci-dessus
on écrit :

In(cos(z)) = Kl — %2 + 0(302)) _ 1] _ [(1 -5 +;(£L’ )> - 1]
7’ ) 2
so([(1-5 +ota) 1))

Dans certain cas, un calcul direct peut permettre d’avoir un développement limité d’ordre
plus élevé.

2

2.2.4 Quotient

Un quotient de la forme % s’écrit sous la forme : % =Jofoul :R* >R, z— % est la

fonction inverse. Un tel quotient peut donc étre vu comme une composition de fonctions.
Or dans ’Exemple 2.9 (b) nous avons vu que I a un DL, (a) pour tout ap € R*, tout
n > 0, donné par la formule :

_ g a)” o
I(z) = — =Y (1) Fd(x), avee ¢(x) = o(z — ao)").
k=0 o

-~

reg(l)

D’oti, en combinant cela avec la Proposition 2.19, I’énoncé suivant :
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2.2 Opérations sur les développements limités

Proposition 2.21. Soit f : D — R* une fonction définie prés de a € R, admettant un
DL,(a) de la forme

f(@)=ao+ai(x—a)+ ...+ an(z —a)"+o((x —a)") avec ag # 0.
reg(f)

Alors la fonction x +— ﬁ admet un DLy (a) dont la partie régulicre s’obtient en faisant

la composition des parties régulieres reg(I) oreg(f) et en tronquant au degré n.

La encore, en pratique, on préfére effectuer le calcul directement, comme dans ’exemple
suivant.

Exemple 2.22. Soit f une fonction admettant le DLy(0) : f(z) = 2 — = + 2% + o(z?).
On calcule alors

1 1 1 1
flx) 2—x+x2+0(x2)_§x1_(%_%+0($2))
= sl (GG ret) ¢ (55 o) ol (5 5 o))
1 r 2?2 9
= 5[14-5—?4-14-0(.%)]
= %4—%—%24-0(3:2).

On peut ensuite étudier un quotient de la forme % en ’écrivant sous la forme d’un
1

produit g(x) x YiGR

e Lorsque f admet un DL, (a) de coefficient constant ag # 0 : on peut alors déterminer

un DL, (a) de ﬁ (comme dans l'exemple ci-dessus) et le combiner avec un DL, (a)

pour en déduire (par produit de développements limités) un DL, (a) de g(z) X ﬁ

e Si f admet un DL, (a) dont le coefficient constant ag est nul : on écrit les DL, (a)
de f et g sous forme normalisée :

f(z) = (z —a)’| Qp +ap+1($ —a)+ ...+ ap(z—a)" P+ o((x—a)""P),
g

g(z) = (x—a)¥ by +bgr1(z—a)+...+by(z—a)" T+ o((x —a)" 7).
g

Si p > q alors le quotient % n’a pas de limité finie, donc pas de développement
limité, en a. En revanche, si p < ¢, aprés simplification par (x — a)P, on se rameéne
a I'étude d’un quotient dont le dénominateur a un DL, _p(a) dont le coefficient
constant est non nul, et on en déduit que % admet un DL,,_p(a), que l'on peut

calculer explicitement.
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2 Développements limités

Exemple 2.23. Supposons que f et g ont les DL3(0) : f(x) = 2z — 2% + 23 + o(23) et
g(x) = 222 + o(x3). On écrit

g(x) _ 232+ o(z)) __ 2z+o0(a?)
f(z) r(2—z+22+0(x?) 2—x+ 2%+ o(x?)
r  2?
= (22 + o(z?)) (% +- < + 0(132)) (d’aprés I'Exemple 2.22)

2
= x+ % + o(x?).

Autre méthode : En pratique, pour calculer un développement limité en 0 d’un quo-
tient, dans le cas ou le dénominateur a un DL, (0) de coefficient constant non nul, on
peut faire une division suivant les puissances croissantes.

Par exemple : soient f(x) = 2 — x + 22 + o(2?) et g(x) = 1+ 2z — 322 + o(2?). Pour
calculer un DLy(0) de g/ f, on pose la division :

2 —x + 2% + o(x?)
1 5 9.2
3+ 17— g%

Ce calcul entraine :
g(x) =142z — 32 + o(a?) = f(z) x (3 + Jo — §27) + o(2?)

‘ glz) 1 5 9 1 1 5 9
TN Z LS 220 ()= 2 4 S 22 2
@) 2—i— T =S +f( )o(x) 2—i— T - o + o(z?)

(car lim,_,o ﬁ = % donc un produit de la forme ﬁ x o(z?) est négligeable devant x?

donc peut encore s’écrire o(x?)).

2.2.5 Primitivation

Une autre opération possible sur un développement limité est la "primitivation" :

Proposition 2.24. Soit f une fonction définie sur un intervalle ouvert I contenant a,
continue sur I, et donc admettant des primitives sur I. Supposons que, pour n > 0, la
fonction f admet le DLy (a) :

f(z) = arle —a)f +of(z —a)").

k=0
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2.2 Opérations sur les développements limités

Alors toute primitive F' de f admet un DLy11(a), donné par

F + Z k k+1 + 0(( a)n—l-l)‘

Démonstration. On écrit
n

flz) =Y a(z —a)* + é(a)

k=0

ot p(x) = o((x — a)™). Comme f est continue, on a

Plz) - Fla) = / F(#)dt = / (anak(t )+ o(t) dt).
a ¢ k=0

En utilisant la linéarité de I'intégrale :
k+1
(r —a)
F(x
0+ Sl [fo

Pour avoir le développement limité souhaité, il reste & justifier que

) limy ey [ ote)a
Pour voir cela, on utilise la définition de la limite. Soit € > 0. Comme on sait que
lim d’(é))n = 0, alors il existe a > 0 tel que

t—0 (t—

(1)

_a)n <e.

O<ft—a|<a = ‘
(t

Soit x € I tel que 0 < |z — a|] < a. Pour tout ¢ strictement compris entre a et x, on a
alors 0 < [t —a| < |z —a|] < adonc |¢(t)| < |t —a|™ < ez —a|™, ce qui permet de borner

I'intégrale ci-dessus :
n+1/ ot dt‘ =z |n+1 )/ 2(1) dt‘ s e

<5|;B al”

<|z—al|xelz—a|™

On a donc montré la formule mathématique :
Ve >0, Ja >0, Vo €I, 0<|1‘—6L|<C¥:>‘ n+1/¢ dt)<5

ce qui montre (). O
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2 Développements limités

Exemple 2.25. (a) On connait le DL, (0) suivant :

3

k=

[e=]

Or la fonction z — —In(1 — z) est la primitive de z — ﬁ qui s’annule en 0, donc

~ 2t +1
J— n
_ln<1_x)_0+k§_0k+1+0($ )

d’ottle DLy41(0) :
ntl k41
-1
In(1+x) = E (=1
k=1

(b) On connait le DL;(0) de la fonction sinus :

a® + o(z™ ).

sin(z) = x + o(x)

ce qui entraine, par primitivation, un DL2(0) de cosinus :
L, 2
—cos(z) = —cos(0) + 5%+ o(z?)

donc
2

cos(z) =1— - T o(z?).

C’est le DL2(0) de cos qu’on avait déja trouvé par une autre méthode. En continuant de
primitiver, on obtient un DL3(0) de sin :

sin(z) = sin(0) + x — — +o(z®) =2 — 4 o(z?)

puis un DL4(0) de cos, puis un DL5(0) de sin, etc.

La partie (b) de l'exemple suggére que, de proche en proche, on peut obtenir un
DL,(a) de toute fonction suffisamment dérivable. Ce principe trouve sa formalisation
dans la section suivante.

2.3 Formule de Taylor—Young

Theorem 2.26. Soient n € N* et f une fonction définie sur un intervalle ouvert 1
contenant a. Si f est n fois dérivable sur I, alors la fonction f admet un DL, (a) donné
par

(g
1@ =3 D s o@ - ap),
k=0
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2.4 Développements asymptotiques, développements limités a I'infini

Démonstration. On procéde par récurrence sur n > 1. L’initialisation a été faite dans
la section 1.5. Pour I’hérédité, on suppose le théoréme vrai pour les fonctions n fois
dérivables. On suppose que f est n + 1 fois dérivable. Alors f’ est n fois dérivable, donc
la formule du théoréme est vraie pour f’ :
(/)P (a) k
7w =3 o ol - o).
k=0

Notons que (f')*)(a) = f*+1(a). Ensuite, par la Proposition 2.24, on obtient un
DL, +1(a) de f, qui a la forme indiquée par ’énoncé. O

A laide des techniques développées, on obtient, dans la Table 2.1, les développements
limités en 0 pour les fonctions usuelles (qu’il faut connaitre).

2.4 Deéveloppements asymptotiques, développements limités
a l'infini

Développement asymptotique : Dans les paragraphes précédents, on a choisi les z*

(k > 0) comme une "échelle d’infiniment petits" au voisinage de 0. On peut, au voisinage

de 0, choisir d’autres échelles et on obtient un développement asymptotique, dont le prin-

cipe général est d’écrire une fonction comme une somme ol chaque terme est négligeable

devant le terme qui le précéde.

Exemple 2.27. Soit f: Ry — R, z — vz + x2. Cette fonction est continue mais n’est
pas dérivable en 0 donc elle n’admet pas un développement limité en 0 d’ordre > Z& En
revanche, elle admet un développement asymptotique en choisissant 1’échelle des z2 :

1 1 1 1
Vr+az2=yzvl+ax= ﬁ(l—i— 3%~ gacQ—i—o(acQ)) :x1/2+§x3/2 - §x5/2—|—0(x5/2).

Développement limité en +o0c :  La notion de développement asymptotique prend sens
au voisinage de +oo (ou —oo) : on appelle développement limité en +oo (ou —o0) un
développement asymptotique suivant I'échelle des =% (k > 0).

Exemple 2.28. Au voisinage de +00, en choisissant I'échelle des 7% :

X1+% 1(1+2><1+1+1+<1)>
—_— = = — JR— —_ ol —
1 x x 2 x4

2

T+ 2
x2—1

1

z

1 2 1 2 1 1
= tutwtatetols)

Application a la recherche d’asymptote a une courbe : Si f est une fonction a valeurs
dans R, définie sur un intervalle de la forme [A, +00[, la courbe de f admet une asymptote
d’équation y = ax 4+ b en 400 si et seulement si

lim (f(z)— (ax +b)) =0.

Tr——+00
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2 Développements limités

En pratique, pour déterminer une asymptote, on peut chercher un développement
asymptotique de f en +o00. Si f a un développement asymptotique de la forme

1 1
f(x):ax+b+a15+...+anx—n+o(x’”)

alors la droite y = ax + b est une asymptote a la courbe en +oo.
Si ap, avec p > 1, désigne le premier coefficient non nul qui apparait dans ce dévelop-
pement asymptotique, alors on a I’équivalence :
1
F@) = (@ +b) ~ o0 .

En étudiant le signe de apx% au voisinage de 400, on peut en déduire la position de
la courbe de f par rapport & son asymptote. On peut naturellement mener une étude
similaire au voisinage de —oo.
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ch(z)

sh(z)

cos(x)

sin(x)

tan(x)

2.4 Développements asymptotiques, développements limités 4 'infini

n
:Zxk+0($”) =1l+a+--+2"+o(z")
k=0
n
= (=1)*z* + o(z") =1l—z+ -+ (=1)"2" 4 o(z")
k=0
n k+1 2 n
-1
D I e e R
k=1
n 2n+1
_ (—1)k 2k+1 2n+2 _ ? n L 2n+1
—k_02k+1:z +o(x ) =z 3+ +(-1) 2n+1+0($ )
n
—1)-(a—k+1 —1
— ala ) kfa * ):vk + o(x") =14+ax+ oz(o;' )ZE2 +
— ! !
1) (o — 1
paam )
n!
(ot a désigne un réel)
n 2 n
1
zk_ogm’“ro(x") :1+x+%+-~-+%+o(x”)
—~ 1 2n+1 § " 2
= =+ o(x™" ) =1+ 5+ + + o(z*")
— (2k)! 2! (2n)!
n 2n+1
_ 1 2k+1 2n+2 z® - 2n+1
_kzo (2k+1)'x + o(x*""7) Tt (2n—|—1)!+0<$ )
n 2n
(=DF o 241 a? x 2
2 @h) % 4 o(x”" ) o7+ +(=1) o)l + o(x™")
n 2n+1
_ (—1)k 2k+1 2n+2y ? n_ <L 2n+1
AR Fol@™) =a -t CU gy el
3
_ x 2 5 5
=z+ 3 + TR + o(z”)

TABLE 2.1: Développements limités en 0 des fonctions usuelles
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3 Extrema des fonctions

3.1 Définition

Définition 3.1. Soit f : I — R une fonction définie sur un intervalle de R et soit a € 1.

(a) On dit que f présente un maximum global (resp. minimum global) au point a, si
pour tout € I on a f(z) < f(a) (resp. si pour tout z € I on a f(z) > f(a)).

(b) On dit que f a un mazimum local (resp. minimum local) au point a, si on a
f(z) < f(a) (vesp. f(z) > f(a)) pour tout z au voisinage de a dans I.

Autrement dit, f a un maximum local (resp. minimum local) en a s’il existe a > 0 tel
que, pour x € I vérifiant |z —a| < a on a f(z) < f(a) (resp. f(z) > f(a)).

Remarque 3.2. (a) Bien sir, si f présente un maximum (ou minimum) global en a,
alors a fortiori f présente un maximum (ou minimum) local en a.

(b) On parle de maximum ou de minimum local strict en a si I'inégalité stricte f(z) <
f(a), resp. f(z) > f(a), est vraie pour x # a au voisinage de a.

Exemple 3.3. (a) La fonction carrée x — 22 présente un minimum global en 0, et c’est
le seul point ou elle présente un extremum local

(b) La fonction z +— —(z — 1)? + 3 présente un maximum global en 1.

(c) Soit f : o+ 23 —22, définie sur R. Comme :CEI—ir-loo f(z) = 4ooet xgmm f(z) = —o0,
la fonction f n’a pas de maximum global ni de minimum global sur R. La fonction f est
dérivable et on a f/(z) = 322 — 2x = x(3z — 2) pour tout = € R. L’étude du signe de la
dérivée montre que f est strictement croissante sur les intervalles | — 00; 0] et [2;+oo] et
strictement décroissante sur [0; %], ce qui entraine que f présente un maximum local en
0 et un minimum local en %

Rappel du cours d’Analyse 2 :

Theorem 3.4 (Théoréme de Heine). Toute fonction f continue sur un segment [c,d] est
bornée et atteint ses bornes.

Ainsi toute fonction continue sur un segment admet un minimum global et un maxi-
mum global.

3.2 Condition nécessaire et condition suffisante d’extremum
local pour une fonction réguliére

3.2.1 Extrema et dérivées premiéres

Proposition 3.5. Soit f : I — R une fonction définie sur un intervalle de R et soit a un
point intérieur de I (i.e., pas une borne de lintervalle). On suppose que f dérivable au
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3 Extrema des fonctions

point a. Si f présente un mazimum local ou un minimum local au point a, alors f'(a) = 0.

Démonstration. Supposons que f présente un maximum local en a. Il existe donc oo > 0
tel que pour tout € INja—a,a+a] on a f(z) < f(a). Comme a est un point intérieur
de I, quitte a choisir « plus petit si nécessaire, on peut supposer [a —a,a+ «] C I. Pour

r < a,ona
f(@) = f(a)
r—a -

0

et en passant a la limite lorsque  — a avec x < a, on obtient

f'(a) = 0.
De méme pour x > a, on a
f@) =1 _,
r—a

et en passant a la limite lorsque * — a avec x > a, on obtient

f'(a) <0.
D’ou f'(a) = 0. O

Remarque 3.6. (a) La réciproque de cette proposition est fausse. Par exemple, la fonc-
tion f : x + 3 vérifie f/(0) = 0, pourtant cette fonction ne présente pas d’extremum
local en 0.

(b) La proposition ne donne aucune condition nécessaire pour avoir un extremum local
en une borne de l'intervalle 1.

Exemple 3.7. Si f(z) = cos(x)+sin(x), alors f est continue sur le segment [0, 7] donc y
est bornée et atteint ses bornes. De plus f est dérivable et on a f'(z) = — sin(x) + cos(x)
pour tout z. Donc f s’annule sur [0,7] en xg = 7/4. On a f(zg) = V2, f(0) = 1 et
f(m) = —1. Donc
e le maximum de f sur [0, 7] est atteint en 7/4 et vaut v/2,
e son minimum est atteint en 7 et vaut —1. Il s’agit donc a fortiori d’'un minimum
local, mais pourtant f'(r) # 0.

3.2.2 Extrema et dérivées secondes ou d’ordre supérieur

Proposition 3.8. Soit f : I — R une fonction définie sur un intervalle de R et soit a
un point intérieur de I. On suppose que f est deux fois dérivable en a, et que a est un
point critique de f, i.e., f'(a) =0. Alors :

e si f"(a) > 0, alors f présente un minimum local strict en a,

e si f"(a) <0, alors f présente un mazimum local strict en a.
En particulier, si f"(a) # 0, alors f présente un extremum local en a.

On a en fait une propriété plus générale :
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3.2 Critére pour extremum local

Proposition 3.9. Soit f : I — R une fonction définie sur un intervalle de R et soit a
un point intérieur de I. On suppose que f estn fois dérivable en a (avecn > 2), et que a
est un point critique de f, i.e., f'(a) = 0. On suppose en outre qu’il existe p € {2,...,n}
tel que f®) (a) # 0 et on note par p le plus petit entier vérifiant cela. Alors :

o Sip est pair, alors f présente un extremum local en a, plus précisément si f(p) (a) >0,
alors f présente un minimum local strict en a, et si f(p)(a) < 0, alors f présente un
maximum local strict en a.

o Sip est impair, alors f ne présente pas d’extremum local en a.

Démonstration. On écrit la formule de Taylor—Young & ordre p en a et, puisque f’(a) =
0, on obtient

™ (q
@) = @)+ 0 - ap 4 ol - ap).
Alors 0 (@)
£(2) = fla) ~a (2 — a1

et donc, pour x # a au voisinage de a, la quantité f(x) — f(a) est de méme signe que
1P (@)@ — a).

Lorsque p est pair : si f®)(a) > 0, on a l'inégalité f(z) > f(a) au voisinage de a, et
f présente un minimum local strict en a, et si f (») (a) < 0, on a, dans un voisinage de a,
I'inégalité f(z) < f(a), de sorte que f présente un maximum local strict en a.

Lorsque p est impair : f)(a)(x — a)P change de signe en a, donc f(z) — f(a) aussi, ce
qui entraine qu’il n’y a pas d’extremum local en a dans ce cas. O

Exemple 3.10. Si
f(x) = sin®(z) + 2cos(z) + 2% et g(z) = f(z) — 2?,

alors au voisinage de 0, on a
213 a? ot 2 g ot 4
f@) = @+ ol@) +20 - T+ Ty +a? = 2408+ Tt ofa)
et
xt 4
g(z):2+ﬁ+o(m)

donc f n’admet pas d’extremum en 0 mais g admet un minimum local en 0 qui vaut 2.
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4 Fonctions convexes

4.1 Définition

Définition 4.1. Soit f : I — R une fonction définie sur un intervalle de R. On dit que

f est conveze sur I si
Ve,y e LYA€[0,1],  fAz+ (1= A)y) < Af(z) + (1= A)f(y).
On dit que f est concave si —f est convexe, autrement dit si

Ve,y € LVA€(0, 1], fQAz+(1=ANy) 2 Af(z) + (1= A)f(y)

Interprétation graphique

Les points de coordonnées (z, f(z)) et (y, f(y))
sont deux points de la courbe de f.

En reliant ces deux points par un segment, on ” /
obtient une corde. /
Lorsque A € [0,1], le point de coordon- _
nées (Az + (1 = Ny, A\f(x) + (1 =N f(y))estun ;oo 4o, [
point de cette corde. /

L’inégalité de la définition signifie que le point du /
graphe de f d’abscisse A\x + (1 — \)y est situé en
dessous du point de la corde de méme abscisse.

Conclusion : f est convexe st et seulement si le
graphe de f est au dessous de chacune de ses
cordes.

Exemple 4.2. (a) L’application valeur absolue z — |z| est convexe sur R.
[En effet : soient A € [0,1], z,y € R. Alors

Az + (1= ANyl < ]+ (1= Nyl = Alz| + (1 = A)y]

par U'inégalité triangulaire. |
(b) La fonction carré = — 2 est convexe sur R.
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4 Fonctions convexes

[En effet : soient A € [0,1], z,y € R. Alors :
M+ (1=Ny2 =Mz + (1 -Ny)? = M2+ (01— N2 = N2 — (1122 =201 — Nay
= M1 =N2? + A1 = N)y? =201 — Nzy
= A1 =\ (2?4 y? — 22y)
= M1l-N(z—y)?*>0
car A>0et 1 —X>0]

Lorsque f est convexe, I'inégalité de la Définition 4.1 est en fait vraie pour un nombre
quelconque de variables :

Proposition 4.3 (Inégalité de Jensen). Soit f : I — R une fonction convexe définie sur
un intervalle. Sotent n > 1, x1,...,xy, des points de I et A\y,..., A\, des réels positifs tels

que Y i N = 1. Alors
n n
S (Z /\iéﬂi) <D O Aif (@),
i=1 i=1
En particulier
1o 1 o
f (5 Zaz) <> @),
=1 =1
Exemple 4.4. En appliquant I'inégalité de Jensen & la fonction carré, on obtient :

n 2 n
Vn > 1, Vxl,...,xneR,<in> Sanf
i=1 i=1

Démonstration de la Proposition 4.3. On raisonne par récurrence sur n > 1. Initialisa-
tion : si n = 1, alors Ay = 1 et la propriété est immédiate. Supposons la propriété vraie
au rang n > 1 et montrons-la au rang n + 1. Soient z1,...,Zn41 € I et Aq,..., App1
des réels positifs tels que A\ + ...+ A\py1 = 1. Si Apgg = Ll alors Ay = ... = X\, =0
et de nouveau l'inégalité est immeédiate. Supposons donc 0 < A4 < 1. On pose alors
X=>r ki\‘—;Hxl On écrit

n+1

Z Aiti = (1 = A1) X + A1 @41

i=1

On obtient alors
n+1

f( Z )\izL‘i) < (=) f(X) + Ag1 f(zny1) (car f est convexe)
=1
< (1=Ant1) ; 1_—)\n+1f($z’) + Ant1f(Tnt1)

(par hypothése de récurrence)
n+1

= > Nif(zi).
i=1
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4.2 D’autres caractérisations graphiques de la convexité

O]

4.2 D’autres caractérisations graphiques de la convexité

L’épigraphe de f est 'ensemble des points situés sur ou au dessus de la courbe de f,
donc ensemble des points de coordonnées (z,y) avec y > f(x). Une partie A du plan est
dite convexe si, pour tous points M, M’ dans A, le segment [M M'] est toujours contenu

dans A.

Proposition 4.5. La fonction f : I — R est conveze si et seulement si son épigraphe
est conveze.

Démonstration. = : Supposons f convexe. Soient M (z,y) et M'(z',y") deux points de
I'épigraphe de f; donc y > f(z) et ¥ > f(2'). Un point du segment [MM'] a pour
coordonnées (Ax+(1—\)z’, \y+(1—X\)y’). Pour voir que ce point appartient a I’épigraphe,
on calcule

fOz 4 (1= N2") < Af(2) + (1 =N f(') <Ay + (1 =Ny

ol la premiére inégalité provient du fait que f est convexe et la seconde égalité provient
du fait que M et M’ appartiennent a ’épigraphe.

< : Supposons 'épigraphe de f convexe. Si M et M’ sont deux points du graphe de f,
alors le segment [M M'] est une corde du graphe. L’hypothése que I’épigraphe est convexe
entraine que le graphe de f est situé au dessous de la corde [M M’]. Donc le graphe de
f est situé au dessous de chacune de ses cordes. D’apreés I'interprétation graphique de la
Définition 4.1, cela entraine que f est convexe. O

Proposition 4.6. Soit f: [ — R une fonction définie sur un intervalle. Les conditions
sutvantes sont équivalentes :

(i) f est conveze;
(il) pour tous a,b,c € I avec a <b < ¢, on a

(%)
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4 Fonctions convexes

T e o o o o

S m—————
&
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-
:_i'-—____-__—___
@
5

Remarque 4.7. On a les équivalences :

) — fla) _ fle) — fla)

b—a c—a

& (= a)(f) - f(@) < (b—a)(f(c) — /(@)
& (c=b)f(a) +(a— () +(b—a)f(c) > 0
7€) = f(a) _ (&)= f(b)

<~ c—a - c—b
f(b) = fla) _ f(c)— f(b)
<~ b—a = c—b

donc les trois inégalités contenues dans la formule (%) sont en fait équivalentes.

Démonstration. On note par M, N, P les points du graphe de f d’abscisses a, b, ¢, donc les
points de coordonnées (a, f(a)), (b, f(b)), (¢, f(c)). L’encadrement (x) est équivalent & la
propriété d’avoir N au dessous du segment [M P]. La condition (ii) est donc équivalente &
avoir que le graphe de f est au dessous de chacune de ses cordes. D’apreés l'interprétation
graphique de la Définition 4.1, cette propriété équivaut a la convexité de f. O

4.3 Convexité pour les fonctions réguliéres

Proposition 4.8. Soit f : [ — R une fonction dérivable sur l'intervalle I. Les conditions
sutvantes sont équivalentes :

(i) f est conveze;

(i) f’ est croissante;

(iii) le graphe de f est situé au dessus de ses tangentes.

Démonstration. (i)=-(iii) : on suppose f convexe. Fixons a € I. On souhaite montrer :

(*) f(z) > f(a) + f'(a)(x —a) pour tout x € I.
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4.3 Convexité pour les fonctions réguliéres

Sixz = a, I'inégalité est claire. Supposons d’abord x > a. Soit y €]a, z[. Par la Proposition

4.6, on a
f) = (@) _ f@) = fla)
Yy—a B r—a
En faisant tendre y vers a, on déduit
oy < L2 1)

d’ott (%) dans le cas ou z > a. Supposons ensuite x < a. Soit y €]z, a[. En invoquant
encore la Proposition 4.6, on a
fla) = fly) _ fly) = f(a)

fl@) = @) _ _

a—x a—1y y—a

En faisant tendre y vers a, on déduit

d’ou (*) dans le cas ou x < a.
(iii)=-(ii) : soient a,b € I tels que a < b. Le graphe de f étant situé¢ au dessus de ses
tangentes aux points a et b, on obtient respectivement

fl@) > f(a) + f'(a)(z —a) et f(z) > f(b)+ f(b)(z—D)

pour tout x € I. En appliquant la premiére inégalité pour x = b puis la seconde pour
r = a, on obtient :

f®) = fla) + f(a)b—a) et f(a) > f(b)+ f'(b)(a—b)

d’ou

f(b) — f(a)

Pl < 20 < ),

(ii)=(i) : on suppose f croissante. Soient a, b, c € I tels que a < b < ¢. Par le théoréme
des accroissements finis il existe ag €]a, b[ et by €]b, [ tels que

IO =T _ pragy o HOTO gy

b—a c—b

Comme ag < by, le fait que f’ est croissante entraine f’(ag) < f’(bg), donc

£8) - fa) _ £(0)~ FO)
b—a ~— c¢—b

D’aprés la Remarque 4.7 on a donc

£6) - f@) _ £(0)~ £(a) _ £(0)— 1D
b—a ~ c¢—a — c¢—b

Cela est vrai quels que soient a, b, ¢, donc par la Proposition 4.6, f est convexe. ]
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4 Fonctions convexes

Corollaire 4.9. Soit f : I — R une fonction deux fois dérivable sur l'intervalle I. Les
conditions suivantes sont équivalentes :

(1) f est convezxe;

(i) f"(x) >0 pour tout x € I.

Exemple 4.10. exp est convexe tandis que In est concave.
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5 Courbes paramétrées

5.1 Rappel : courbes représentatives des fonctions

Soit f : I — R une fonction définie sur un intervalle. Un repére orthonormé du plan
étant fixé, la courbe représentative de f, notée Cy, est 'ensemble des points de coordonnées
(2, ().

e Si f est continue alors la courbe Cy est conneze (=d’'un seul tenant ; formée par une

ligne continue ; on peut la tracer sans lever le crayon).

e Si f est dérivable, alors la courbe admet une tangente en tout point; au point

d’abscisse a le coefficient directeur de la tangente est f’(a) (et 'équation est y =

fla) + f'(a)(x — a)).

Remarque 5.1. (a) Il n’est pas nécessaire que f soit dérivable pour que la courbe
admette une tangente en tout point. Par exemple, soit f : [0;4+00[— R, z — /x. La
fonction f est continue sur [0;+4o00], dérivable sur ]0;+4oo[, mais pas dérivable en 0.
Néanmoins la courbe Cy admet une tangente (verticale) en l'origine.

(b) Une courbe C¢ représentative d’une fonction ne peut pas avoir deux points ayant
méme abscisse z (car x n’a qu’une seule image par f). En particulier, un cercle ne peut
pas étre la courbe d’une fonction.

Exemple 5.2. Soit f : [-1;1] — R, z — /1 —22. La courbe Cs est le demi-cercle

supérieur de centre l'origine et rayon 1. La fonction f est dérivable sur | — 1;1[ et pour
tout z €] — 1;1[ on a f/'(z) = \/% La fonction f n’est pas dérivable en 1 et —1 car
lim,_q % = —ooet lim,_,_4 % = +00. La courbe Cy admet des tangentes

verticales aux points d’abscisses 1 et —1.

e D’autres propriétés de la fonction f peuvent s’interpréter graphiquement sur la
courbe Cy :
— Si f est paire, alors Cy est symétrique par rapport a ’axe des ordonnées.
— Si f est impaire, alors Cy est symétrique par rapport a ’axe des abscisses.
— Si f est bijective et g note sa bijection réciproque, alors Cy et Cy sont symétriques
par rapport a la droite d’équation y = x.

5.2 Fonctions a valeurs dans R2

On s’intéresse désormais a des fonctions f : D — R? définies sur une partie D de R et
a valeurs dans R?. Une telle fonction peut s’écrire :

f(t) = (x(t),y(t)) pour tout t € D
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5 Courbes paramétrées

ou z,y : D — R sont appelées fonctions coordonnées.
On peut étendre les notions vues pour les fonctions a valeurs dans R aux fonctions a
valeurs dans R? :

Définition 5.3. (a) On dit que f est continue en a € D (resp. sur D) si les fonctions
coordonnées x,y sont continues en a € D (resp. sur D).
(b) On dit que f est dérivable en a (resp. sur D) si les fonctions coordonnées z,y sont
dérivables en a (resp. sur D). On note alors f'(a) = (2/(a),y'(a)) le vecteur dérivé en a.
(c) Plus généralement on dit que f est n fois dérivable (ou de classe C"™) sur D si c¢’est
le cas des fonctions coordonnées z et y. On note alors £ (t) = (™ (t), 3™ (t)).

Exemple 5.4. f: R — R? t+ (cost,sint) est une fonction de classe C°.

5.3 Courbe paramétrée

On fixe un repére orthonormé du plan (O, i j)
Définition 5.5. Un arc paramétré de classe C™ (n > 0) est la donnée d’un couple (I, f)
ot I est un intervalle de R et f : I — R? une fonction de classe C™.

L’ensemble Cy := f(I), formé par les points M; de coordonnées f(t) = (x(t),y(t)), est
appelé support de I'arc, ou courbe paramétrée associée. On dit aussi que l'arc f est un
paramétrage de la courbe Cy.

Remarque 5.6. (a) On dira plus simplement "arc paramétré" plutot que "arc paramétré
de classe CY". D’aprés cette convention, on se limite & considérer des arcs paramétrés
continus. Cela entraine que la courbe paramétrée associée est connexe.

(b) On s’autorisera aussi occasionnellement & considérer des arcs paramétrés f: D —
R? définis sur un ensemble D qui ne soit pas un intervalle mais une réunion d’intervalles.
Dans ce cas la courbe associée ne sera pas connexe en général.

(c) Un arc paramétré est dit simple si 'application f est injective, ce qui signifie que
les points My sont tous deux a deux distincts. Une courbe paramétrée est dite simple si
elle admet un paramétrage par un arc paramétré simple.

Exemple 5.7. (a) La courbe représentative C, d'une fonction g : D — R continue
a valeurs dans R peut étre obtenue comme courbe paramétrée, pour l'arc paramétré
f:D—R% ¢ (tg(t).

(b) La courbe paramétrée associée & f : R — R?, t + (cost,sint) est le cercle centré
en l'origine de rayon 1. L’arc paramétré fi : R — R?, t +— (cos(2t),sin(2t)) fournit un
deuxiéme paramétrage de la méme courbe. L'arc fs : [0; 27[— R2, t +— (cos(t), sin(t)) est
un troisiéme paramétrage de la méme courbe, qui est simple.

Remarque 5.8. On peut considérer que la courbe paramétrée C; est la trajectoire d'un
mobile, en fonction du paramétre ¢ qui représente le temps. Ainsi dans ’'Exemple 5.7 les
arcs f et fi; correspondent & une méme trajectoire, mais dans le cas de f; la trajectoire
est parcourue deux fois plus vite que pour f.
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5.4 Etude locale : tangente en un point

Dans I’étude d’une courbe paramétrée, on peut utiliser des symétries de la courbe pour

réduire l'intervalle d’étude :

e Si f est T-périodique, alors on peut se limiter a I’étude de f sur un intervalle cor-
respondant & une période, par exemple [0; T'[.

e Sipour tout ¢ on observe que le point de coordonnées (—x(t), —y(t)), resp. (x(t), —y(t)),
resp. (—z(t),y(t)), resp. (y(t),z(t)) appartient encore a la courbe, alors cela signifie
que la courbe est symétrique par rapport a l’origine, resp. ’axe des abscisses, resp.
I’axe des ordonnées, resp. la droite d’équation y = x.

Exemple 5.9. Dans le cas de f : R — R?, t — (cos(t),sin(t)), la fonction f étant 2m-
périodique, on peut se limiter a étudier f sur [0; 27[. Par ailleurs, pour tout ¢ € [0; 27| on
remarque que (— cost, —sint) = (cos(m+t),sin(r+t)) = f(w+t) donc Cy est symétrique
par rapport a l'origine. On a aussi (sint,cost) = f(5 —t) donc f est symétrique par
rapport a la droite d’équation y = z. On a de méme que f est symétrique par rapport a
I’axe des abscisses et & celui des ordonnées. Au final, pour reconstituer toute la courbe,
il suffit de considérer I'arc paramétré [0; 5] — R2 t +— f(t) et appliquer & sa courbe
associée les transformations géométriques décrites ci-dessus.

5.4 Etude locale : tangente en un point

Lorsque la droite (M,M;) admet une position limite lorsque ¢ tend vers a, on dit que
la courbe Cy admet une tangente au point M,. Remarque : si M, est un point multiple
de la courbe (i.e. M, = M} pour au moins une autre valeur du paramétre b # a) alors il
peut y avoir plusieurs tangentes au point M,.

Définition 5.10. Soit f : I — R? un arc paramétré et a € I. On dit que le nombre a
est régulier pour f sile vecteur dérivé f'(a) = (2'(a),y'(a)) est non nul. Sinon, on dit
que a est singulier pour f.

Proposition 5.11. Si a est régulier pour f, alors Cy admet une tangente au point M,
de vecteur directeur V, = 2/(a)i + 1/ (a)].

Démonstration. Soit t € I'\ {a}. Etant donné M (z;y), on a :

x(t) — x(a) y(t) —y(a)
(Mo M) y —y(a) f—a (y—y(a)) f—a (z—x(a))
ce qui nous donne l'équation de la droite (M,M;). Lorsque t tend vers a, la droite a
comme position limite la droite d’équation 2'(a)(y — y(a)) = ¥'(a)(x — z(a)) (le fait
d’avoir (2/(a),y’(a)) # (0,0) garantit qu'’il s’agit bien 1a de I’équation d’une droite).
Cette droite est tangente a la courbe au point M, et V, est un vecteur directeur de cette
droite.

O

Exemple 5.12. (a) Soit f : R — R2 ¢ ~ (cost,sint). Alors f'(t) = (—sint,cost)
est non nul pour tout ¢. Donc tout a € R est régulier pour f, et donc le vecteur V, =



5 Courbes paramétrées

—(sin a)z_"—i— (cos a)j est un vecteur tangent & Cy au point M,. Remarque : si a = 0 ou
a = 7, ce vecteur est vertical, si a = § ou 37“, ce vecteur est horizontal.

(b) Soit f : [0;+00[— R, t > (t,/1) : cet arc paramétré n’est pas dérivable en 0... En
posant g : [0; +00[— R2, t — (t2,t), on obtient néanmoins un paramétrage dérivable (et
méme C*) de la méme courbe paramétrée. Pour tout ¢ € [0;+00[ on a ¢'(t) = (2t,t) de
sorte que tout nombre a > 0 est régulier pour g. En particulier pour a = 0, on obtient

que Vo = j est un vecteur tangent (vertical) a la courbe, en 'origine.

En réalité, comme nous allons le voir, il n’est pas nécessaire que a soit régulier pour
que la courbe admette une tangente au point M,.

5.5 Développements limités des fonctions a valeurs dans R?

Dans la méme logique d’étendre les propriétés des fonctions a valeurs dans R aux
fonctions a valeurs dans R?, on a :

Theorem 5.13 (Formule de Taylor Young). Soit f : I — R% t +— (2(t),y(t)) une
fonction deuz fois dérivable et soit a € I. On note f*)(a) = (¥ (a),y™ (a)) € R2.
Alors :

(t—a)?
2

(t—a)

ft) = fla) + (t—a)- f'(a) + @)+ - f @)+ (8- ) e ()

ot g : I — R? est une fonction telle que limy_q e(t) = (0,0).

Démonstration. Conséquence de la formule de Taylor—Young usuelle, écrite pour chaque
fonction coordonnée. [

Exemple 5.14. Soit f(t) = (t+cos(t),t—sin(t)) avec t € R. On cherche le développement
limité de f, d’ordre 3, donné par la formule de Taylor—Young.
On peut aussi écrire directement le développement limité de f (en fait, de chaque
fonction coordonnée) en 0 :
2 3
fi) = (L+t——+%(t), — + t°e(t)

2 6
2 3

= (1,0)+1(1,0) + S (~1,0) + (0, 1) + £ e(t),<2(0)
N————
e(t)

Par identification, f(0) = (1,0), f(0) = (1,0), f”(0) = (—1,0), f®(0) = (0,1).

5.6 Etude locale en un point (suite)

On peut maintenant étendre la construction de vecteurs tangents au cas des points
singuliers.
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5.6 Etude locale en un point (suite)

Proposition 5.15. Soit f : I — R? un arc paramétré de classe C™, a € I, et sup-
posons qu’il existe p € {1,...,n} — que Uon choisit alors minimal — tel que f®)(a) =
(2P)(a),yP)(a)) # (0,0). Alors C; admet une tangente au point M,, de vecteur directeur
V, = 2®)(a)i + y®(a)J.

Démonstration. On applique la formule de Taylor—Young qui donne :

Mf(p)(a) +(t—a)fe(t), avec lime(t) = (0,0).

£ = fl@)+ £ fim

Cela entraine que, pour tout ¢t # a, le vecteur

(@) (a) + pler ()7 + (y#(a) + plea (1))7

est un vecteur tangent a la droite (M,M;). En faisant tendre t vers a, ce vecteur tend
vers Vg, qui est alors tangent & la courbe paramétrée au point M,. ]

Exemple 5.16. Si f(t) = (cos?(t),sin®(t)) alors f'(t) = (—3sin(t) cos?(t), 3 cos(t) sin?(t))

donc f/(0) = (0,0). Pour déterminer un vecteur tangent, on calcule alors f”(t) =
(=3 cos3(t) + 6sin?(t) cos(t), —3sin3(t) + 6 cos?(t) sin(t)) ainsi f(0) = (—3,0) # (0,0),
et donc Vjy = —37 est vecteur tangent a la courbe au point My(1,0).

En poursuivant le développement limité au dela du rang p, on peut avoir une informa-
tion plus précise sur 'allure de la courbe au voisinage du point M. Avec p comme dans la
proposition ci-dessus, on suppose qu’il existe ¢ € {p+1,...,n} — que on choisit minimal
— tel que f(9(a) n’est pas colinéaire a f)(a) (en particulier il faut avoir f(@(a) # (0,0)
mais ce n’est pas suffisant en général).

On pose alors W, = 2D (a)7+ y@(a)7, et on obtient deux vecteurs V,, W, non coli-
néaires. On va travailler dans le repére (M,, V., Wa)

La formule de Taylor—Young donne :

Cela entraine que le vecteur M, M; peut s’écrire

Mo M= X(OV, + Y(OW, ot X(t) ~a

Pour ¢ > a (c’est-a-dire apreés le passage au point M), on a X (¢) > 0 et Y (¢) > 0 donc le
point M; de la courbe est situé dans la partie du plan formé par les points de coordonnées
positives dans le repére (M,, Va, W ); de plus V est un vecteur tangent a la courbe.
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5 Courbes paramétrées

zone 2

zone 4

Il y a en tout quatre parties du plan, suivant le signe des coordonnées dans le repére.
Pour t < a il y a quatre configurations possibles :

parité | parité [ signe de X (%) | signe de Y (¢) | zone de M;

t d int
de p de g pour t < a pour t < a pour t < a ype de poin

impair | pair <0 >0 zone 2 point ordinaire
impair | impair <0 <0 zone 3 point d’inflexion
. . . rebroussement de
pair | impair >0 <0 zone 4 . .
lére espéce
. . . rebroussement de
pair | impair >0 >0 zone 1

2éme espéce

Exemple 5.17. (a) Soit f(t) = (¢,t3) et étudions le type du point My(0,0). On a
F(t) = (1,3t2) donc f'(0) = (1,0), Vo =7, et p = 1. Ensuite f”(¢) = (0,6t) de sorte que
£7(0) = (0,0), enfin £ (0) = (0,6) non colinéaire a (1,0), donc Wy = 67 et ¢ = 3. Ainsi
p et g sont impairs. Donc My est un point d’inflexion de la courbe. Comme la courbe
paramétrée associée & f coincide en fait avec la courbe représentative de la fonction cube,
on retrouve le fait que cette derniére a un point d’inflexion en l’origine.

(b) Soit f(t) = (cos3(t),sin3(t)) comme dans I'exemple précédent. Reprenons cet
exemple en cherchant un développement limité d’ordre 3 (au lieu de calculer les déri-
vées successives comme précédemment) :

cos3(t) = (1 N + 0(t3)>3 =1- th +o(t?)

2
et sin3(t) = 3 + o(t3) (car sin(t) =t + o(t)), donc
t2 3
F(#) = (1,0) + 5 (=1,0) + 5;(0,6) + £=(t).

Cela entraine : p =2, ¢ = 3, Vo = —7, Wo = 67, et My(1,0) est un point de rebroussement
de premiére espéce.
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6 Séries numériques a termes positifs

6.1 Généralités sur les séries

Définition 6.1. Soit (uy)n>0 une suite numérique. La série numérique de terme général
uy, est la suite (Sy,)n>0 définie par

n
Sp=ui +us+...+u, = Zuk pour tout entier n > 0.
k=0
On note cette série Yy up.
On appelle u,, le terme d’indice n et on appelle S, la somme partielle d’indice n de la

série Y .

En principe la suite (u,) formant les termes de la série peut étre une suite a valeurs
réelles ou méme complexes, mais dans ce cours on se limite au cas des séries a termes
positifs : u,, est un réel positif ou nul, pour tout n.

Remarque 6.2. Si la suite (u,) n’est définie qu’a partir du rang ng, alors il en est de
méme de la série Y uy, et on a S, = Uy, + ... + u, pour tout n > ng.

Par exemple, % est la série de terme général %, défini pour n > 1. Pour tout n > 1,
la somme partielle de cette série est donnée par
1 1
Sp,=14+=+...+—.
2 n

La série Z% est appelée série harmonique.

Exemple 6.3. (a) Soit (uy)n>0 la suite définie par u, = n pour tout n. Alors la série

> n a pour somme partielle S, =0+ 14 ...+ n = @
(b) Soit plus généralement (uy,),>0 une suite arithmétique de la forme u, = a + rn

pour tout n > 0. Alors > (a + rn) a pour somme partielle S, = a(n+ 1) + r#.

(¢) Soit ¢ un réel positif différent de 1. La série > ¢" est appelée série géométrique. La
l_qn+1

1—q

Remarque 6.4. En général, il n’est pas possible de donner une formule explicite pour la
somme partielle d’une série. Au dela des cas traités dans I’exemple ci-dessus, un autre cas
ol un tel calcul est possible est celui de “sommes télescopiques” comme dans ’exemple

somme partielle est S, =1+¢+ ... +¢" =

suivant.
Soit la série ) m On remarque que n(n1+1) = % — n+r1 La somme partielle peut
alors se calculer ainsi :
n n
1 1 1 1 1 1 1 1 1
Sn=> e = (f-ps) =l-5+5 -5+t - —1- .
" ;k(kﬂ) ; ko k+1 SRR i | n+1
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6 Séries numériques & termes positifs

6.2 Séries convergentes

Définition 6.5. On dit qu’une série > u, est convergente si la somme partielle S,
admet une limite finie quand n — +o0o. Lorsqu’il n’y a pas de limite finie, la série est
dite divergente.

(On dit aussi que la série converge / diverge.)
+o0o

Cette limite est alors appelée la somme de la série et on la note Z Uy
n=0
Exemple 6.6. (a) La série Y n diverge, puisque S, = w — +00.
(b) La série géométrique Y ¢" est convergente si et seulement si ¢ € [0, 1]. La somme

de la série est alors :
ERCS)
S
n=>0 1- q
1

(¢) Au vu du calcul de somme partielle effectué dans la Remarque 6.4, la série > D)
est convergente de somme égale & 1.

On remarque que, si Y u, converge, autrement dit si S,, tend vers une limite finie ¢,
alors S, _1 tend aussi vers £. Il résulte que u,, = S, — S,—1 tend vers O :

Proposition 6.7 (Condition nécessaire de convergence). Si la série »  u, converge, alors
son terme général u, tend vers 0 lorsque n — +00.

Lorsque u,, ne tend pas vers 0, on dit que > u,, diverge grossiérement. Par exemple la
série Y n diverge grossiérement.

Cette condition nécessaire n’est pas suffisante, comme l'indique ’exemple suivant :
Exemple 6.8. On considére la série > In "TH On observe que In "TH =In(n+1)—In(n)
de sorte que la somme partielle se calcule (via une somme télescopique) :

Sp = zn:(ln(k +1)—1In(k)) =In(n+1) —In(1l) =ln(n+ 1) — +oo si n — +oo
k=1
n+1

Ainsi la série diverge. Pourtant In == — 0 si n — +o00.

Dans le cas qui nous intéresse des séries & termes positifs, la suite des sommes partielles
(Sn)n>0 est croissante, puisque Sy41 — Sp = Up41 > 0 pour tout n. Comme (Sy,)p>0 est
croissante, elle a une limite, qui peut étre +00 ou un réel positif. Le second cas se produit

si et seulement si (S,,) est majorée :

Proposition 6.9. Soit > u, une série a termes positifs. La série Y u, converge si et
seulement si la suite (Sy,) des sommes partielles est majorée.
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6.3 Critéres de comparaison

6.3 Criteres de comparaison

Dans cette section, on suppose que »_ u, et > v, sont deux séries a termes positifs.
On note par S, = Y ,_juk et T, = Y ,_, v) leurs sommes partielles respectives.
On a d’abord clairement :

Proposition 6.10. (a) Si > u, et > v, convergent, alors > (u, + vy) converge, et
o0 (tn 4 vn) = 3555 tn + 325% tn-
(b) Si > uy, converge et X est un réel alors S (Auy,) converge et > 2% (Auy) = A 3120wy,

On souhaite maintenant des résultats permettant de comparer la convergence des deux
séries > uy, et Y. vy.

Proposition 6.11. St u, < v, pour tout entier n > 0, ou au moins pour tout entier n
a partir d’un certain rang ng, alors :

> v, converge = > u, converge,

> uy, diverge = Y vy, diverge.

Démonstration. 1l suffit de montrer la premiére implication, puisque la seconde en est la
contraposée. Supposons que »_ v, converge. La somme partielle (7},) est alors majorée :
il existe M > 0 tel que T;,, < M pour tout entier n. En utilisant ’hypothése on a :

Yn>0, Sp,<us+...+up—1+7Tn <up+...+up—1+ M.
Ainsi (S,,) est majorée et donc > u, converge. O

Exemple 6.12. La série ) # est convergente, puisqu’on a # < 2% pour tout n > 1,
et on sait que la série ) % converge.

On généralise I’énoncé précédent au travers de la relation de prépondérance : on note
un, = O(vy,) s'il existe un rang ng et un réel positif M tels que |uy,| < M|v,| pour tout
n > ng — ou en fait u, < Muv, pour des suites & termes positifs. Lorsque v, # 0 pour
tout n, la relation u, = O(vy) revient a dire que la suite () est bornée.

Si up, = o(vy) ou uy, ~ vy, alors on a en particulier u,, = O(v,). En combinant les deux
propositions précédentes, on obtient alors :

Proposition 6.13. (a) Supposons u, = O(vy,). Alors :

> vy, converge = > u, converge,

> uy diverge = > vy, diverge.

Ces implications ont donc lieu a fortiori si un, = o(vy,).
(b) Supposons up, ~ vy,. Alors les séries Y uy, ety vy sont de méme nature.
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6 Séries numériques & termes positifs

Exemple 6.14. (a) Onaln 2t =1In(1+1) ~ 1. Or nous avons vu que la série Y In 2t

diverge. Donc la série harmonique ) - L est dlvergente
EENV
(b) On a Z{nTT)» OF Dous avons vu que la série Z

S 2 oz est convergente

( ) Par conséquent la série Y -L sera divergente pour tout o < 1 (car on a alors

o(-%)) et convergente pour tout o > 2 (car alors - = o(n1 ))-

+1) converge, donc la série

1
n

6.4 Séries de Riemann

On compléte 'exemple précédent :

Proposition 6.15 (Séries de Riemann). Soit « > 0. La série ) n% est convergente si
et seulement si o > 1.

La démonstration s’appuie sur le critére suivant de comparaison série/intégrale.

Proposition 6.16. Soit f : [1,4+o00[— [0, +00| une fonction continue, décroissante. La
série Y. f(n) converge si et seulement si Uintégrale [* f(x) dz a une limite finie lorsque
n — +00.

Démonstration. La suite ([|" f(z) dx) est croissante. 11 suffit donc de montrer :
(%) (Sn) est majorée < (] f(z)dz) est majorée

ou S, note la somme partielle d’indice n de la série Y f(n).
Observons d’abord que, comme f est décroissante, pour tout entier £ > 1, on a

Veelkk+1, fk+1) < f@) < (k).
Cela entraine

k+1
Vk>1, fk+1)< /k fz)dz < f(k).

En sommant cette relation pour k variant de 1 & n, on obtient alors

n+1
Sn+1—f(1):f(2)—|—...+f(n+1)§/1 Fx)dz < F(1) + ...+ f(n) = Sn.

D’ou (). O

Démonstration de la Proposition 6.15. On applique la proposition précédente a la fonc-
tion f :x — x%, qui est décroissante (car « > 0). La convergence de la série de Riemann
> n% est donc équivalente a la convergente de la suite ( fln x% dr). Orsiaa>1ona

no1 l‘_a—H n n—a—f—l 1 1
/—da;:[ } - - N eR.
1 —a+1l1 —a+1 —a+1 a—1

Donc Z —= converge lorsque o > 1. On a déja vu que Z diverge si o < 1. O
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6.5 Critéres de d’'Alembert et de Cauchy

Proposition 6.17 (Critére de d’Alembert). Soit Y wu, une série a termes strictement
positifs (au moins & partir d’un certain rang).
On suppose que la limite £ = limy_, 4 oo uz—:l € [0, +o0] eziste.

(a) Si € <1, alors ) uy converge.

(b) Sit>1, alors > u, diverge grossiérement.

(¢) Sil =1, alors... on ne peut rien dire.

Démonstration. (a) On fixe g tel que £ < g < 1. Il existe alors un rang ng tel que “Z—:l <gq
pour tout m > ng. Alors u, < up,q"~ " pour tout n > ng, d’ou il résulte que la série
> u, converge puisque la série géométrique Y ¢" converge.

(b) On fixe ¢ €]1, /[ et il existe alors un rang ng tel que uzzl > ¢ pour tout n > ng.
D’ot uy, > up,q" "™ pour tout n > ng, ce qui entraine u,, — 400 quand n — +oo, de
sorte que Y u,, diverge grossiérement. O

Exemple 6.18. Considérons la série > u,, de terme général u, = Z—? pour n > 0. On

calcule ) |
1 ! 1 1\2
U, (m+1)! n2 n+1 n

Par le critére de d’Alembert, la série ) u, est convergente.
De maniére assez analogue a la régle de d’Alembert, on a :

Proposition 6.19 (Régle de Cauchy). Soit Y u, une série a termes strictement positifs
(au moins & partir d’un certain rang).
On suppose que la limite £ := limy,_, o0 /Un € [0, +00] existe.

(a) Si € <1, alors ) uy converge.

(b) Sit > 1, alors > u, diverge grossiérement.

(c) Sil=1, on ne peut rien dire.

2
Exemple 6.20. Soit > u, la série de terme général w, = g—z On a Yu, = nn X %
2
pour tout n > 1. Or n» = exp(%ln n) — exp(0) = 1 par croissance comparée, donc
lim ¢u,, — % < 1 ce qui, d’apreés le critére de Cauchy, entraine que »_ u, converge.
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