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1 Notion de limite, relations de
comparaison entre fonctions

1.1 Limite d’une suite

Soit (un)n≥0 une suite à valeurs réelles. La notion de limite d’une suite a été entrevue
au lycée. La définition précise suivante sera vue dans le cours d’Analyse 2 :

Définition 1.1. (a) Soit ` ∈ R. On dit que (un) a pour limite ` lorsque n tend vers +∞,
ou que (un) converge vers `, si :

∀ε ∈ R∗
+, ∃n0 ∈ N, ∀n ∈ N, n ≥ n0 ⇒ |un − `| < ε.

(b) On dit que (un) a pour limite +∞ (resp. −∞) lorsque n tend vers +∞, ou que
(un) diverge vers +∞ (resp. −∞), si :

∀M ∈ R, ∃n0 ∈ N, ∀n ∈ N, n ≥ n0 ⇒ un > M

(resp. un < M).

Exemple 1.2. (a) Voici des limites connues :

lim
n→+∞

1
n

= 0; lim
n→+∞

n3 = +∞; lim
n→+∞

ln(n) = +∞; lim
n→+∞

e−n = 0.

(b) La suite (un) définie par un = (−1)n pour tout n n’a pas de limite lorsque n tend
vers +∞ : elle diverge sans limite.

Remarque 1.3. Dans ce qui suit, lorsqu’on écrit : « lim
n→+∞

un = ` », cela veut dire :

« la limite existe et est égale à ` ». Plus précisément, lorsqu’on écrit « lim
n→+∞

un », cela

présuppose que la limite existe. Et pareillement pour les limites de fonctions.

1.2 Limite d’une fonction

Dans ce cours, on s’intéressera à des fonctions f : D → R où D est un intervalle de
R ou une réunion d’intervalles 1 de R. Par ailleurs, on considère la droite réelle achevée :
R = R∪ {+∞,−∞}. Pour a ∈ R, on dira que f est définie près de a si a est un point de
D ou une borne de (l’un des intervalles qui forment) D.
On peut alors définir la notion de limite de f en a. Voici la définition précise, qui sera

vue aussi en cours d’Analyse 2 :

1. Lorsqu’on dit que f est définie sur un intervalle/une réunion d’intervalles, on sous-entend que cet
intervalle/chacun de ces intervalles est non vide et non réduit à un point.
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1 Notion de limite, relations de comparaison entre fonctions

Définition 1.4. Soit a ∈ R. Soit f : D → R une fonction définie près de a. Soit ` ∈ R.
1er cas : a = +∞ :
(1.a) On dit que f a pour limite ` quand x tend vers +∞ si

∀ε > 0, ∃A ∈ R, ∀x ∈ D, x > A ⇒ |f(x) − `| < ε.

(1.b) On dit que f a pour limite +∞ (resp. −∞) quand x tend vers +∞ si :

∀M ∈ R, ∃A ∈ R, ∀x ∈ D, x > A ⇒ f(x) > M

(resp. f(x) < M).

2ème cas : a ∈ R :
(2.a) On dit que f a pour limite ` quand x tend vers a si

∀ε > 0, ∃α > 0, ∀x ∈ D, |x − a| < α ⇒ |f(x) − `| < ε.

(2.b) On dit que f a pour limite +∞ (resp. −∞) quand x tend vers a si :

∀M ∈ R, ∃α > 0, ∀x ∈ D, |x − a| < α ⇒ f(x) > M

(resp. f(x) < M).

Exercice 1.5. Établir les limites lim
x→+∞

1
x = 0 et lim

x→0
x<0

1
x = −∞ à l’aide de la définition.

Exemple 1.6. (a) Des limites de référence :

∀n ∈ N∗, lim
x→+∞

xn = +∞, lim
x→−∞

xn =

{
+∞ si n est pair,
i∞ si n est impair,

lim
x→0
x>0

1
x

= +∞, lim
x→−∞

1
x

= 0, lim
x→+∞

√
x = +∞, lim

x→+∞
ex = +∞,

lim
x→−∞

ex = 0, lim
x→+∞

ln(x) = +∞, lim
x→0

ln(x) = −∞.

(b) Croissance comparée :

∀n ∈ N∗, lim
x→+∞

ex

xn
= +∞, lim

x→+∞

ln(x)
x

= 0.

(c) D’autres limites connues depuis le lycée

lim
x→0

sin(x)
x

= 1, lim
x→0

ex − 1
x

= 1, lim
x→1

ln(x)
x − 1

= 1.

Proposition 1.7 (Opérations sur les limites). On se donne deux fonctions f et g ayant
comme limites ` et `′, éléments de R, en a ∈ R. Alors :
(a) f +g a pour limite `+`′ en a, sauf si ` et `′ sont +∞ et −∞ (forme indéterminée).
(b) f × g a pour limite `× `′ en a, sauf si ` et `′ sont ±∞ et 0 (forme indéterminée).
(c) 1

g a pour limite
1
`′ en a, sauf si `′ = 0 ; toutefois si limx→a g(x) = 0 et g(x) > 0

pour tout x (respectivement, g(x) < 0 pour tout x), alors limx→a
1

g(x) = +∞ (resp.

limx→a
1

g(x) = −∞).

Remarque 1.8. Pour décider de la limite de f
g on écrit

f
g = f × 1

g et on se sert des
points (b)–(c) de la proposition.
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1.3 Lien entre limites des suites et limite d’une fonction

1.3 Lien entre limites des suites et limite d’une fonction

Proposition 1.9. Soient a, ` ∈ R et f : D → R une fonction définie près de a. Les
conditions suivantes sont équivalentes :
(i) lim

x→a
f(x) = `.

(ii) Pour toute suite (un) à valeurs dans D telle que lim
n→+∞

un = a on a lim
n→+∞

f(un) = `.

La démonstration sera faite dans le cours d’Analyse 2. On n’utilisera que l’implication
(i)⇒(ii), sous la forme du corollaire suivant :

Corollaire 1.10. S’il existe deux suites (un) et (vn) à valeurs dans D telles que lim
n→+∞

un =

lim
n→+∞

vn = a et lim
n→+∞

f(un) 6= lim
n→+∞

f(vn), alors f n’a pas de limite en a.

Exemple 1.11. En considérant les suites un = 2nπ et vn = 2nπ + π, on prouve que cos
n’a pas de limite en +∞.

Exercice 1.12. Montrer que la fonction f : x 7→ sin 1
x n’admet pas de limite en 0.

1.4 Relations de comparaison

On dira qu’une propriété est vraie sur un voisinage de a dans D, ou plus simplement
au voisinage de a (lorsque D = R, ou bien lorsque D est clair dans le contexte) si cette
propriété a lieu pour tout x ∈ D suffisamment proche de a, c’est-à-dire :
• pour tout x ∈ D dans un intervalle de la forme ]a − δ; a + δ[ lorsque a ∈ R,
• pour tout x ∈ D dans un intervalle de la forme ]A; +∞[, resp. ] − ∞; A[, lorsque

a = +∞, resp. a = −∞.

Exemple 1.13. La fonction ln :]0;+∞[→ R est négative au voisinage de 0.

Définition 1.14. Soit a ∈ R. Soient f, g : D → R deux fonctions définies près de a.
(a) On dit que f est négligeable devant g en a et on note f = oa(g) si, au voisinage de

a, on peut écrire f(x) = ε(x)g(x) où ε est une fonction telle que limx→a ε(x) = 0.
(b) On dit que f est équivalente à g en a et on note f ∼a g si, au voisinage de a, on

peut écrire f(x) = η(x)g(x) où η est une fonction telle que limx→a η(x) = 1.

On a le critère pratique suivant :

Proposition 1.15. On suppose que la fonction g ne s’annule pas au voisinage de a sauf
éventuellement en a. Alors :

(a) f = oa(g) si et seulement si lim
x→a

f(x)
g(x)

= 0 ;

(b) f ∼a g si et seulement si lim
x→a

f(x)
g(x)

= 1.

Démonstration. On peut écrire f(x) = f(x)
g(x) × g(x) au voisinage de a, et dans chaque cas

la fonction x 7→ f(x)
g(x) a la limite requise en a pour qu’on puisse en déduire la relation de

comparaison souhaitée.
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1 Notion de limite, relations de comparaison entre fonctions

Exemple 1.16. (a) sin(x) ∼0 x ; en effet, x ne s’annule pas au voisinage de 0, sauf en
0, et on connaît la limite lim

x→0

sin(x)
x = 1.

(b) ln(x) = o+∞(x), car en effet lim
x→+∞

ln(x)
x = 0.

(c) arctan(x) ∼+∞
π
2 ; plus généralement si lim

x→a
f(x) = ` ∈ R∗ alors f(x) ∼a `.

Remarque 1.17. La relation "être négligeable devant au voisinage de a" est une relation
transitive : si f = oa(g) et g = oa(h), alors f = oa(h). La relation être "équivalent à au
voisinage de a" est une relation d’équivalence (réflexive, transitive et symétrique).

Exercice* 1.18. Supposons f = oa(g) et g = oa(f). Montrer que f et g sont nulles sur
un voisinage de a.

Remarque 1.19. (1) Les mêmes relations de comparaison peuvent être définies dans le
cas des suites. Soient (un)n∈N et (vn)n∈N deux suites à valeurs réelles.
(a) On dit que (un) est négligeable devant (vn) si, à partir d’un certain rang, on a

un = εnvn où (εn) est une suite telle que lim
n→+∞

εn = 0. On note alors un = o(vn).

(b) On dit que (un) est équivalente à (vn) si, à partir d’un certain rang, on a un = ηnvn

où (ηn) est une suite telle que lim
n→+∞

ηn = 1. On note alors un ∼ vn.

(2) Comme dans le cas des fonctions, dans le cas où la suite (vn) ne s’annule pas à
partir d’un certain rang, on a le critère plus simple :
(a) un = o(vn) si et seulement si lim

n→+∞

un

vn
= 0 ;

(b) un ∼ vn si et seulement si lim
n→+∞

un

vn
= 1.

(3) Par exemple, 1
n
√

n
= o( 1

n), n2+cos(n)
n3−7

∼ 1
n .

1.5 Rappel sur la dérivabilité et notre premier DL

Soit f : I → R une fonction définie sur un intervalle et soit a ∈ I. On dit que f
est continue en a si limx→a f(x) = f(a) (ce qui revient à dire, en fait, que limx→a f(x)
existe ; cette limite est alors forcément égale à f(a)).
On dit que f est dérivable en a si la limite

f ′(a) := lim
x→a

f(x) − f(a)
x − a

existe et appartient à R. Alors, dans un repère orthonormé du plan, la courbe représen-
tative Cf admet une tangente au point d’abscisse a, d’équation

y = f ′(a)(x − a) + f(a).

Posons ϕ(x) = f(x) − [f ′(a)(x − a) + f(a)]. On obtient

ϕ(x)
x − a

=
f(x) − f(a)

x − a
− f ′(a) → 0 si x → a,
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1.5 Rappel sur la dérivabilité et notre premier DL

donc ϕ(x) = oa(x − a). On peut alors écrire :

f(x) = f(a) + f ′(a)(x − a) + oa(x − a).

Cette expression, qui montre dans quelle mesure f est approximée par la fonction affine
x 7→ f(a) + f ′(a)(x − a), est appelée développement limité de f en a à l’ordre 1.
L’objet du chapitre suivant est d’étendre la notion de développement limité pour des

ordres supérieurs, dans le but d’obtenir des approximations plus précises de f .
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2 Développements limités

2.1 Définition et premières propriétés

2.1.1 Développement limité en un point

On considère une fonction f : D → R définie près de a ∈ R.

Définition 2.1. Soit n ≥ 0 un entier naturel.
On dit que f admet un développement limité d’ordre n en a (on écrit DLn(a)), si il

existe des coefficients réels a0, a1, . . . , an tels que la fonction

ϕ : D → R, x 7→ f(x) − [ a0 + a1(x − a) + . . . + an(x − a)n ]

vérifie :

lim
x→a

ϕ(x)
(x − a)n

= 0 c’est-à-dire ϕ(x) = oa((x − a)n).

Autrement dit, f admet un DLn(a) si on peut écrire

f(x) = a0 + a1(x − a) + . . . + an(x − a)n + ϕ(x)

où a0, a1, . . . , an sont des réels et ϕ(x) = oa((x − a)n).
La fonction polynomiale x 7→

∑n
k=0 ak(x− a)k est appelée la partie régulière du déve-

loppement limité.

Remarque 2.2. Si f admet un DLn(a), alors a fortiori f admet un DLk(a) pour tout
ordre k ≤ n, dont la partie régulière s’obtient en "tronquant" au degré k la partie régulière
du DLn. On peut écrire en effet

f(x) = a0 + a1(x − a) + . . . + ak(x − a)k + ak+1(x − a)k+1 + . . . + an(x − a)n + ϕ(x)
︸ ︷︷ ︸

=oa((x−a)k)

.

Rien ne dit en revanche que f admettra un DLm(a) pour m > n.
Un développement limité permet d’approximer une fonction f par une fonction poly-

nomiale (=la partie régulière du développement limité), au voisinage d’un point. Plus
l’ordre est élevé, plus l’approximation sera précise.

Exemple 2.3. (a) Comme vu à la fin du chapitre précédent, si f est dérivable en a,
alors f admet un DL1(a) :

f(x) = f(a) + f ′(a)(x − a) + oa((x − a)1);

les coefficients de ce développement limité sont donc a0 = f(a) et a1 = f ′(a).
D’où des exemples de DL1(0) :
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2 Développements limités

• sin(x) = sin(0) + sin′(0) × x + o(x) = x + o(x),
• cos(x) = 1 + o(x),
• exp(x) = 1 + x + o(x).

Un exemple de DL1(1) :
• ln(x) = ln(1) + ln′(1) × (x − 1) + o((x − 1)) = (x − 1) + o((x − 1)).
(b) Si f est une fonction polynomiale de degré ≤ n

f(x) =
n∑

k=0

akx
k

alors f admet un DLn(0) de partie régulière Regn(f ; 0) = f .
Plus généralement, quel que soit a ∈ R, on peut encore écrire f sous la forme

f(x) = b0 + b1(x − a) + . . . + bn(x − a)n

avec d’autres coefficients b0, . . . , bn (car les monômes x 7→ (x− a)k, k = 0, . . . , n forment
une base de l’espace vectoriel des fonctions polynomiales de degré ≤ n), et cette écriture
indique que f admet un DLn(a) quel que soit a.
(c) Soit f : R \ {1} → R, x 7→ 1

1−x . Pour tout entier naturel n ≥ 0, on connaît la
formule

n∑

k=0

xk =
1 − xn+1

1 − x
pour tout x ∈ R \ {1},

qui permet alors d’écrire

f(x) =
1

1 − x
=

n∑

k=0

xk + xn x

1 − x
.

Comme lim
x→0

x
1−x = 0, cette écriture montre que f admet, pour tout rang n ≥ 0, un

DLn(0) de partie régulière
∑n

k=0 xk.

Exercice 2.4. (a) Montrer que, si f admet unDLn(a) de rang n ≥ 0, alors lim
x→a

f(x) = a0

(le coefficient constant du développement limité).
(b) Supposons f continue en a. Montrer que, si f admet un DLn(a) avec n ≥ 1, alors f

est dérivable en a de nombre dérivé f ′(a) = a1 (le coefficient de degré 1 du développement
limité).

Cet exercice commence à suggérer que les coefficients d’un développement limité, s’il
existe, sont uniquement caractérisés. Cela est dit plus précisément par la proposition
suivante.

Proposition 2.5. Si f admet un DLn(a), alors il est unique. Plus précisément, si on a
deux développements limités :

f(x) = a0 +a1(x−a)+ . . .+an(x−a)n +ϕ(x) = b0 + b1(x−a)+ . . .+ bn(x−a)n +ψ(x)

alors ak = bk pour tout k = 0, 1, . . . , n, et ϕ ≡ ψ.
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2.1 Définition et premières propriétés

Démonstration. Supposons par l’absurde qu’il existe k ∈ {0, . . . , n} tel que ak = bk, et
notons par k0 le plus petit k vérifiant cela. On a alors pour tout x ∈ D :

a0 + . . . + ak0−1(x − a)k0−1 + ak0(x − a)k0 + . . . + an(x − a)n + ϕ(x)

= a0 + . . . + ak0−1(x − a)k0−1 + bk0(x − a)k0 + . . . + bn(x − a)n + ψ(x)

donc

ak0(x−a)k0 +. . .+an(x−a)n+(x−a)nφ(x) = bk0(x−a)k0 +. . .+bn(x−a)n+(x−a)nψ(x).

En divisant par (x − a)k0 on obtient pour tout x 6= a :

ak0 + . . .+an(x−a)n−k0 +(x−a)n−k0φ(x) = bk0 + . . .+ bn(x−a)n−k0 +(x−a)n−k0ψ(x).

En passant à la limite lorsque x → a, il suit : ak0 = bk0 , une contradiction.

2.1.2 Cas des fonctions paires / impaires

Exemple 2.6. (a) On rappelle le DL1(0) : sin(y) = y + ϕ(y) où ϕ(y) = o(y).
(b) On en déduit un DL2(0) de cos : pour tout x ∈ R, on écrit

cos(x) = cos
(
2 ×

x

2

)
= 1 − 2 sin2

(x

2

)
= 1 − 2

[x
2

+ ϕ
(x

2

)]2

= 1 −
1
2
x2 +

[
2xϕ

(x

2

)
+ 2ϕ

(x

2

)2

︸ ︷︷ ︸
ψ(x)

]
= 1 −

1
2
x2 + ψ(x)

où lim
x→0

ψ(x)
x2

= lim
x→0

[ϕ(x/2)
x/2

+
1
2

(ϕ(x/2)
x/2

)2]
= 0. On a donc obtenu un DL2(0) de cos.

Exercice 2.7. (a) Justifier les encadrements suivants :

∀x ∈ R+, x −
x3

6
≤ sin(x) ≤ x et ∀x ∈ R−, x ≤ sin(x) ≤ x −

x3

6

(on pourra faire une étude de fonctions) et en déduire le DL2(0) : sin(x) = x + o(x2).

(b) En déduire le DL3(0) : cos(x) = 1 −
x2

2
+ o(x3).

(On aura besoin d’une méthode plus systématique pour trouver un DLn(a) d’une
fonction donnée, pour n ≥ 2.)
Voici une propriété vérifiée en particulier par les développements limités ci-dessus des

fonctions sin et cos. Attention : elle n’est valide que pour un développement limité en 0.

Proposition 2.8. Soit f : D → R une fonction définie sur un ensemble symétrique (i.e.
x ∈ D ⇒ −x ∈ D) contenant 0, et on suppose que f admet un DLn(0) :

f(x) = a0 + a1x + . . . + anxn + ϕ(x).

Si f est paire alors on a ak = 0 pour tout k impair. Si f est impaire alors on a ak = 0
pour tout k pair.
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2 Développements limités

Démonstration. Lorsque f est paire, on écrit

f(x) = f(−x) = a0 − a1x + a2x
2 − . . . + (−1)nanxn + ϕ(−x) =

n∑

k=0

(−1)kakx
k + ϕ(−x)

et on a lim
x→0

ϕ(−x)
xn

= lim
x→0

(−1)n ϕ(−x)
(−x)n

= 0, donc la formule ci-dessus est un second

DLn(0) de f . L’unicité du développement limité (Proposition 2.5) entraîne alors l’égalité
ak = (−1)kak pour tout entier k compris entre 0 et n, donc ak = 0 pour tout tel entier
impair.
Lorsque f est impaire, le raisonnement est similaire en écrivant f(x) = −f(−x).

2.1.3 Se ramener à un développement limité en 0

Pour chercher un DLn(a) d’une fonction f , il suffit de chercher un DLn(0) de la
fonction (h 7→ f(a + h)).

Exemple 2.9. (a) On cherche un DL3(2) de la fonction inverse f : x 7→ 1
x . Pour cela

"on pose x = 2 + h", autrement dit on cherche un DL3(0) de la fonction h 7→ 1
2+h . On

écrit :
1

2 + h
=

1
2
×

1

1 − (−h
2 )

.

On utilise le DL3(0) déjà vu :

1
1 − y

= 1 + y + y2 + y3 + ϕ(y)

et on remplace y par −h
2 :

1
2 + h

=
1
2
(1 + (−h/2) + (−h/2)2 + (−h/2)3 + ϕ(−h/2))

=
1
2
−

h

4
+

h2

8
−

h3

16
+ ψ(h)

où ψ(h) = 1
2ϕ(−h/2) vérifie lim

h→0

ψ(h)
h3 = 0. D’où finalement

1
x

=
1
2
−

x − 2
4

+
(x − 2)2

8
−

(x − 2)3

16
+ ψ̃(x)

où ψ̃(x) = ψ(x − 2) vérifie lim
x→2

ψ̃(x)
(x−2)3

= 0.

(b) En raisonnant de même, on trouve un DLn(a) de la fonction inverse en tout point
a ∈ R \ {0}, pour tout ordre n ≥ 0 :

1
x

=
1

a + h
=

n∑

k=0

(−1)k hk

ak+1
+ ψ(h) =

n∑

k=0

(−1)k (x − a)k

ak+1
+ ψ̃(x)

où lim
h→0

ψ(h)
hn = lim

x→a

ψ̃(x)
(x−a)n = 0.
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2.2 Opérations sur les développements limités

2.2 Opérations sur les développements limités

2.2.1 Combinaison linéaire

Proposition 2.10. Soient f, g : D → R deux fonctions qui admettent un DLn(a). Soit
λ ∈ R un scalaire. Alors λf + g admet un DLn(a), dont la partie régulière s’obtient en
faisant la combinaison linéaire des parties régulières des développements de f et de g.

Démonstration. On écrit :

f(x) = a0 + a1(x − a) + . . . + an(x − a)n

︸ ︷︷ ︸
reg(f):=partie régulière de f

+(x − a)nφ(x) où lim
x→a

φ(x) = 0

g(x) = b0 + b1(x − a) + . . . + bn(x − a)n

︸ ︷︷ ︸
reg(g):=partie régulière de g

+(x − a)nψ(x) où lim
x→a

ψ(x) = 0

de sorte que :

λf(x) + g(x) =
n∑

i=0

(λai + bi)(x − a)i

︸ ︷︷ ︸
λreg(f)+reg(g)

+(x − a)n(λφ(x) + ψ(x))
︸ ︷︷ ︸

=oa((x−a)n)

.

Exemple 2.11. On a les DL2(0) : 1
1−x = x + x2 + o(x2) et sin(x) = x + o(x2) donc

1
1−x − sin(x) = x2 + o(x2), ce qui entraîne par ailleurs 1

1−x − sin(x) ∼0 x2.

2.2.2 Produit

Lemme 2.12 (Règles de calcul). Soient k, ` ≥ 0 deux entiers et a ∈ R.

(a) Si g(x) = oa((x − a)`) alors (x − a)kg(x) = oa((x − a)k+`).

(b) Si f(x) = oa((x − a)k) et g(x) = oa((x − a)`) alors f(x)g(x) = oa((x − a)k+`).

Autrement dit,

(x−a)k×oa((x−a)`) = oa((x−a)k+`) et oa((x−a)k)×oa((x−a)`) = oa((x−a)k+`).

Démonstration. (a)
(x − a)kg(x)
(x − a)k+`

=
g(x)

(x − a)`
→ 0 si x → a.

(b)
f(x)g(x)

(x − a)k+`
=

f(x)
(x − a)k

×
g(x)

(x − a)`
→ 0 si x → a.

En utilisant ces règles de calcul, et une distributivité, on obtient l’énoncé suivant :

Proposition 2.13. Si f, g : D → R admettent un DLn(a), alors la fonction produit
fg aussi, de plus la partie régulière du DLn(a) de fg s’obtient en faisant le produit des
parties régulières des DLn(a) de f et de g, et en tronquant au degré n.
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2 Développements limités

Exemple 2.14. (a) Soit f(x) = sin(x) et g(x) = x
1−x . On a les DL2(0) : x

1−x = x +
x2 +o(x2) et sin(x) = x+o(x2). En appliquant la proposition, on obtient que la fonction
x 7→ x sin(x)

1−x admet unDL2(0) dont la partie régulière s’obtient en tronquant (x+x2)×x =

x2 + x3 au degré 2, d’où x sin(x)
1−x = x2 + o(x2).

(b) On peut aussi retrouver le résultat du point précédent en faisant le calcul directe-
ment :

x sin(x)
1 − x

=
x

1 − x
× sin(x) = (x + x2 + o(x2))(x + o(x2))

= x2 + x3 + xo(x2) + xo(x2) + o(x2)o(x2)
︸ ︷︷ ︸

=o(x3)

= x2 + x3 + o(x3).

On en déduit en particulier la formule de (a) : x sin(x)
1−x = x2 + o(x2). Mais notre résultat

est plus précis, c’est un DL3(0).
(c) On connaît les DL2(0) : sin(x) = x + o(x2) et cos(x) = 1 − x2

2 + o(x2). D’après la
proposition, x 7→ sin(x) cos(x) a un DL2(0) de partie régulière x. Voyons si on obtient
mieux en faisant le calcul directement :

sin(x) × cos(x) = (x + o(x2))(1 −
x2

2
+ o(x2))

= x −
x3

2
+ xo(x2) + o(x2) −

1
2
x2o(x2)

︸ ︷︷ ︸
=o(x2)

= x + o(x2).

Dans cet exemple, le résultat de la proposition est optimal.

Remarque : la partie (b) de l’exemple montre qu’en effectuant le calcul directement, on
peut obtenir un résultat plus précis que celui indiqué par la proposition. C’est pourquoi,
en pratique, on n’applique pas nécessairement la proposition mais on peut opter pour un
calcul direct. On peut néanmoins établir aussi un résultat théorique plus précis. Il est
basé sur la définition suivante :

Définition 2.15. Soit f une fonction admettant un DLn(a) de partie régulière non
nulle :

f(x) = a0 + a1(x − a) + . . . + an(x − a)n + (x − a)nφ(x) avec lim
x→a

φ(x) = 0.

En notant par k ∈ {0, . . . , n} le premier indice tel que ak 6= 0, on peut écrire :

f(x) = (x − a)k
[
ak + ak+1(x − a) + . . . + an(x − a)n + (x − a)n−kφ(x)

︸ ︷︷ ︸
oa((x−a)n−k)

]
.

Cette écriture est appelée forme normale du DLn(a) de f .

16



2.2 Opérations sur les développements limités

Proposition 2.16. Supposons que f et g ont respectivement un DLk+p(a) et un DL`+p(a)
de formes normales suivantes :

f(x) = (x−a)k
[ p∑

i=0

a′i(x − a)i

︸ ︷︷ ︸
reg′(f)

+oa((x−a)p)
]
, g(x) = (x−a)`

[ p∑

i=0

b′i(x − a)i

︸ ︷︷ ︸
reg′(g)

+oa((x−a)p)
]
.

Alors fg a un DLk+`+p(a) de forme normale

fg(x) = (x − a)k+`
[
P (x) + oa((x − a)p)

]

où P (x) s’obtient en effectuant le produit reg′(f) × reg′(g) et en tronquant au degré p.

Exemple 2.17. Reprenons l’Exemple 2.14 (b). On a les formes normales suivantes :
x

1−x = x(1 + x + o(x)) et sin(x) = x(1 + o(x)). Donc x sin(x)
1−x = x2(1 + x + o(x)), d’où on

retrouve le DL3(0) : x sin(x)
1−x = x2 + x3 + o(x3).

2.2.3 Composition

On ajoute une règle de calcul :

Lemme 2.18 (Règle de calcul 2). Si f(x) ∼a λg(x), où λ est un scalaire non nul, et
h(x) = oa(f(x)), alors h(x) = oa(g(x)). Autrement dit,

f(x) ∼a g(x) ⇒ oa(f) = oa(g).

Démonstration. Les hypothèses permettent d’écrire, au voisinage de a :

f(x) = η(x)λg(x) et h(x) = ε(x)g(x) avec lim
x→a

ε(x) = 0, lim
x→a

η(x) = 1.

D’où :
h(x) = λε(x)η(x)f(x) avec lim

x→a
λε(x)η(x) = 0

ce qui entraîne la conclusion.

Cette règle permet, par exemple, de simplifier une expression, en remplaçant une ex-
pression du type

o

((1
2
x + 3x2 + o(x2)

)3
)

par o(x3).

En se basant sur cette règle de calcul, on obtient :

Proposition 2.19. Soient f : D → R et g : E → R deux fonctions telles que f(D) ⊂ E
de sorte que la composition g ◦ f : D → R, x 7→ g(f(x)) est bien définie. De plus on
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2 Développements limités

suppose f définie près de a ∈ R, g définie près de b ∈ R, et que f et g ont respectivement
un DLn(a) et un DLn(b) de la forme suivante :

f(x) = a0 + a1(x − a) + . . . + an(x − a)n

︸ ︷︷ ︸
reg(f)

+o
(
(x − a)n

)
avec a0 = b

g(y) = b0 + b1(y − b) + . . . + bn(y − b)n

︸ ︷︷ ︸
reg(g)

+o
(
(y − b)n

)
.

Alors g ◦ f a un DLn(a), dont la forme régulière s’obtient en composant les formes
régulières des deux développements : reg(g) ◦ reg(f), et en tronquant au degré n.

Exemple 2.20. (a) La composition ln ◦ cos est bien définie, sur l’intervalle D =]− π
2 , π

2 [.

Nous connaissons déjà le DL2(0) de la fonction cos : cos(x) = 1 − x2

2 + o(x2). Nous

connaîtrons bientôt le DL2(1) de la fonction ln : ln(y) = (y − 1) − (y−1)2

2 + o
(
(y − 1)2

)
.

D’après la proposition, ln ◦ cos a un DL2(0) de partie régulière obtenue en tronquant au
degré 2 la composition des parties régulières

[(
1 −

x2

2

)
− 1
]
−

[(
1 − x2

2

)
− 1
]2

2
ce qui donne

ln(cos(x)) = −
x2

2
+ o(x2).

(b) En pratique, au lieu d’appliquer la proposition, on préfère effectuer le calcul direc-
tement (en utilisant les règles de calculs des lemmes précédents), dans l’exemple ci-dessus
on écrit :

ln(cos(x)) =
[(

1 −
x2

2
+ o(x2)

)
− 1
]
−

[(
1 − x2

2 + o(x2)
)
− 1
]2

2

+o

([(
1 −

x2

2
+ o(x2)

)
− 1
]2)

.

Dans certain cas, un calcul direct peut permettre d’avoir un développement limité d’ordre
plus élevé.

2.2.4 Quotient

Un quotient de la forme 1
f s’écrit sous la forme :

1
f = I ◦f où I : R∗ → R, x 7→ 1

x est la
fonction inverse. Un tel quotient peut donc être vu comme une composition de fonctions.
Or dans l’Exemple 2.9 (b) nous avons vu que I a un DLn(a) pour tout a0 ∈ R∗, tout
n ≥ 0, donné par la formule :

I(x) =
1
x

=
n∑

k=0

(−1)k (x − a0)k

ak+1
0

︸ ︷︷ ︸
reg(I)

+φ(x), avec φ(x) = o((x − a0)
n).

D’où, en combinant cela avec la Proposition 2.19, l’énoncé suivant :
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2.2 Opérations sur les développements limités

Proposition 2.21. Soit f : D → R∗ une fonction définie près de a ∈ R, admettant un
DLn(a) de la forme

f(x) = a0 + a1(x − a) + . . . + an(x − a)n

︸ ︷︷ ︸
reg(f)

+o
(
(x − a)n

)
avec a0 6= 0.

Alors la fonction x 7→ 1
f(x) admet un DLn(a) dont la partie régulière s’obtient en faisant

la composition des parties régulières reg(I) ◦ reg(f) et en tronquant au degré n.

Là encore, en pratique, on préfère effectuer le calcul directement, comme dans l’exemple
suivant.

Exemple 2.22. Soit f une fonction admettant le DL2(0) : f(x) = 2 − x + x2 + o(x2).
On calcule alors

1
f(x)

=
1

2 − x + x2 + o(x2)
=

1
2
×

1

1 − (x
2 − x2

2 + o(x2))

=
1
2

[
1 +

(x

2
−

x2

2
+ o(x2)

)
+
(x

2
−

x2

2
+ o(x2)

)2
+ o
((x

2
−

x2

2
+ o(x2)

)2)]

=
1
2

[
1 +

x

2
−

x2

2
+

x2

4
+ o(x2)

]

=
1
2

+
x

4
−

x2

8
+ o(x2).

On peut ensuite étudier un quotient de la forme g(x)
f(x) en l’écrivant sous la forme d’un

produit g(x) × 1
f(x) .

• Lorsque f admet un DLn(a) de coefficient constant a0 6= 0 : on peut alors déterminer
un DLn(a) de 1

f(x) (comme dans l’exemple ci-dessus) et le combiner avec un DLn(a)

pour en déduire (par produit de développements limités) un DLn(a) de g(x)× 1
f(x) .

• Si f admet un DLn(a) dont le coefficient constant a0 est nul : on écrit les DLn(a)
de f et g sous forme normalisée :

f(x) = (x − a)p[ ap︸︷︷︸
6=0

+ap+1(x − a) + . . . + an(x − a)n−p + o((x − a)n−p)],

g(x) = (x − a)q[ bq︸︷︷︸
6=0

+bq+1(x − a) + . . . + bn(x − a)n−q + o((x − a)n−q)].

Si p > q alors le quotient g
f n’a pas de limité finie, donc pas de développement

limité, en a. En revanche, si p ≤ q, après simplification par (x − a)p, on se ramène
à l’étude d’un quotient dont le dénominateur a un DLn−p(a) dont le coefficient
constant est non nul, et on en déduit que g

f admet un DLn−p(a), que l’on peut
calculer explicitement.
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2 Développements limités

Exemple 2.23. Supposons que f et g ont les DL3(0) : f(x) = 2x − x2 + x3 + o(x3) et
g(x) = 2x2 + o(x3). On écrit

g(x)
f(x)

=
x2(2 + o(x))

x(2 − x + x2 + o(x2))
=

2x + o(x2)
2 − x + x2 + o(x2)

= (2x + o(x2))
(1

2
+

x

4
−

x2

8
+ o(x2)

)
(d’après l’Exemple 2.22)

= x +
x2

2
+ o(x2).

Autre méthode : En pratique, pour calculer un développement limité en 0 d’un quo-
tient, dans le cas où le dénominateur a un DLn(0) de coefficient constant non nul, on
peut faire une division suivant les puissances croissantes.
Par exemple : soient f(x) = 2 − x + x2 + o(x2) et g(x) = 1 + 2x − 3x2 + o(x2). Pour

calculer un DL2(0) de g/f , on pose la division :

1 + 2x − 3x2 + o(x2) 2 − x + x2 + o(x2)
−1 + 1

2x − 1
2x2 + o(x2) 1

2 + 5
4x − 9

8x2

5
2x − 7

2x2 + o(x2)
−5

2x + 5
4x2 + o(x2)

−9
4x2 + o(x2)
9
4x2 + o(x2)

o(x2)

Ce calcul entraîne :

g(x) = 1 + 2x − 3x2 + o(x2) = f(x) × (1
2 + 5

4x − 9
8x2) + o(x2)

donc
g(x)
f(x)

=
1
2

+
5
4
x −

9
8
x2 +

1
f(x)

o(x2) =
1
2

+
5
4
x −

9
8
x2 + o(x2)

(car limx→0
1

f(x) = 1
2 donc un produit de la forme

1
f(x) × o(x2) est négligeable devant x2

donc peut encore s’écrire o(x2)).

2.2.5 Primitivation

Une autre opération possible sur un développement limité est la "primitivation" :

Proposition 2.24. Soit f une fonction définie sur un intervalle ouvert I contenant a,
continue sur I, et donc admettant des primitives sur I. Supposons que, pour n ≥ 0, la
fonction f admet le DLn(a) :

f(x) =
n∑

k=0

ak(x − a)k + o((x − a)n).
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2.2 Opérations sur les développements limités

Alors toute primitive F de f admet un DLn+1(a), donné par

F (x) = F (a) +
n∑

k=0

ak

k + 1
(x − a)k+1 + o((x − a)n+1).

Démonstration. On écrit

f(x) =
n∑

k=0

ak(x − a)k + φ(x)

où φ(x) = o((x − a)n). Comme f est continue, on a

F (x) − F (a) =
∫ x

a
f(t)dt =

∫ x

a

( n∑

k=0

ak(t − a)k + φ(t) dt
)
.

En utilisant la linéarité de l’intégrale :

F (x) = F (a) +
n∑

k=0

ak
(x − a)k+1

k + 1
+
∫ x

a
φ(t) dt.

Pour avoir le développement limité souhaité, il reste à justifier que

(∗) lim
x→a

1
(x − a)n+1

∫ x

a
φ(t) dt = 0.

Pour voir cela, on utilise la définition de la limite. Soit ε > 0. Comme on sait que
lim
t→0

φ(t)
(t−a)n = 0, alors il existe α > 0 tel que

0 < |t − a| ≤ α ⇒
∣
∣
∣

φ(t)
(t − a)n

∣
∣
∣ ≤ ε.

Soit x ∈ I tel que 0 < |x − a| ≤ α. Pour tout t strictement compris entre a et x, on a
alors 0 < |t−a| ≤ |x−a| ≤ α donc |φ(t)| ≤ ε|t−a|n ≤ ε|x−a|n, ce qui permet de borner
l’intégrale ci-dessus :

∣
∣
∣

1
(x − a)n+1

∫ x

a
φ(t) dt

∣
∣
∣ ≤

1
|x − a|n+1

∣
∣
∣

∫ x

a
|φ(t)|
︸ ︷︷ ︸

≤ε|x−a|n

dt
∣
∣
∣

︸ ︷︷ ︸
≤|x−a|×ε|x−a|n

≤ ε.

On a donc montré la formule mathématique :

∀ε > 0, ∃α > 0, ∀x ∈ I, 0 < |x − a| ≤ α ⇒
∣
∣
∣

1
(x − a)n+1

∫ x

a
φ(t) dt

∣
∣
∣ ≤ ε

ce qui montre (∗).
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2 Développements limités

Exemple 2.25. (a) On connaît le DLn(0) suivant :

1
1 − x

=
n∑

k=0

xk + o(xn).

Or la fonction x 7→ − ln(1 − x) est la primitive de x 7→ 1
1−x qui s’annule en 0, donc

− ln(1 − x) = 0 +
n∑

k=0

xk+1

k + 1
+ o(xn+1)

d’où le DLn+1(0) :

ln(1 + x) =
n+1∑

k=1

(−1)k+1

k
xk + o(xn+1).

(b) On connaît le DL1(0) de la fonction sinus :

sin(x) = x + o(x)

ce qui entraîne, par primitivation, un DL2(0) de cosinus :

− cos(x) = − cos(0) +
1
2
x2 + o(x2)

donc

cos(x) = 1 −
x2

2
+ o(x2).

C’est le DL2(0) de cos qu’on avait déjà trouvé par une autre méthode. En continuant de
primitiver, on obtient un DL3(0) de sin :

sin(x) = sin(0) + x −
x3

6
+ o(x3) = x −

x3

6
+ o(x3)

puis un DL4(0) de cos, puis un DL5(0) de sin, etc.

La partie (b) de l’exemple suggère que, de proche en proche, on peut obtenir un
DLn(a) de toute fonction suffisamment dérivable. Ce principe trouve sa formalisation
dans la section suivante.

2.3 Formule de Taylor–Young

Theorem 2.26. Soient n ∈ N∗ et f une fonction définie sur un intervalle ouvert I
contenant a. Si f est n fois dérivable sur I, alors la fonction f admet un DLn(a) donné
par

f(x) =
n∑

k=0

f (k)(a)
k!

(x − a)k + o((x − a)n).
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2.4 Développements asymptotiques, développements limités à l’infini

Démonstration. On procède par récurrence sur n ≥ 1. L’initialisation a été faite dans
la section 1.5. Pour l’hérédité, on suppose le théorème vrai pour les fonctions n fois
dérivables. On suppose que f est n + 1 fois dérivable. Alors f ′ est n fois dérivable, donc
la formule du théorème est vraie pour f ′ :

f ′(x) =
n∑

k=0

(f ′)(k)(a)
k!

(x − a)k + o((x − a)n).

Notons que (f ′)(k)(a) = f (k+1)(a). Ensuite, par la Proposition 2.24, on obtient un
DLn+1(a) de f , qui a la forme indiquée par l’énoncé.

À l’aide des techniques développées, on obtient, dans la Table 2.1, les développements
limités en 0 pour les fonctions usuelles (qu’il faut connaître).

2.4 Développements asymptotiques, développements limités
à l’infini

Développement asymptotique : Dans les paragraphes précédents, on a choisi les xk

(k ≥ 0) comme une "échelle d’infiniment petits" au voisinage de 0. On peut, au voisinage
de 0, choisir d’autres échelles et on obtient un développement asymptotique, dont le prin-
cipe général est d’écrire une fonction comme une somme où chaque terme est négligeable
devant le terme qui le précède.

Exemple 2.27. Soit f : R+ → R, x 7→
√

x + x2. Cette fonction est continue mais n’est
pas dérivable en 0 donc elle n’admet pas un développement limité en 0 d’ordre ≥ 1. En
revanche, elle admet un développement asymptotique en choisissant l’échelle des x

1
2 :

√
x + x2 =

√
x
√

1 + x =
√

x
(
1 +

1
2
x −

1
8
x2 + o(x2)

)
= x1/2 +

1
2
x3/2 −

1
8
x5/2 + o(x5/2).

Développement limité en ±∞ : La notion de développement asymptotique prend sens
au voisinage de +∞ (ou −∞) : on appelle développement limité en +∞ (ou −∞) un
développement asymptotique suivant l’échelle des x−k (k ≥ 0).

Exemple 2.28. Au voisinage de +∞, en choisissant l’échelle des x−k :

x + 2
x2 − 1

=
1
x
×

1 + 2
x

1 − 1
x2

=
1
x

(
1 +

2
x

)(
1 +

1
x2

+
1
x4

+ o
( 1

x4

))

=
1
x

+
2
x2

+
1
x3

+
2
x4

+
1
x5

+ o
( 1

x5

)
.

Application à la recherche d’asymptote à une courbe : Si f est une fonction à valeurs
dans R, définie sur un intervalle de la forme [A, +∞[, la courbe de f admet une asymptote
d’équation y = ax + b en +∞ si et seulement si

lim
x→+∞

(f(x) − (ax + b)) = 0.
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2 Développements limités

En pratique, pour déterminer une asymptote, on peut chercher un développement
asymptotique de f en +∞. Si f a un développement asymptotique de la forme

f(x) = ax + b + a1
1
x

+ . . . + an
1
xn

+ o(x−n)

alors la droite y = ax + b est une asymptote à la courbe en +∞.
Si ap, avec p ≥ 1, désigne le premier coefficient non nul qui apparaît dans ce dévelop-

pement asymptotique, alors on a l’équivalence :

f(x) − (ax + b) ∼+∞ ap
1
xp

.

En étudiant le signe de ap
1
xp au voisinage de +∞, on peut en déduire la position de

la courbe de f par rapport à son asymptote. On peut naturellement mener une étude
similaire au voisinage de −∞.
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2.4 Développements asymptotiques, développements limités à l’infini

1
1 − x

=
n∑

k=0

xk + o(xn) = 1 + x + ∙ ∙ ∙ + xn + o(xn)

1
1 + x

=
n∑

k=0

(−1)kxk + o(xn) = 1 − x + ∙ ∙ ∙ + (−1)nxn + o(xn)

ln(1 + x) =
n∑

k=1

(−1)k+1

k
xk + o(xn) = x −

x2

2
+ ∙ ∙ ∙ + (−1)n+1 xn

n
+ o(xn)

arctan(x) =
n∑

k=0

(−1)k

2k + 1
x2k+1 + o(x2n+2) = x −

x3

3
+ ∙ ∙ ∙ + (−1)n x2n+1

2n + 1
+ o(x2n+1)

(1 + x)α =
n∑

k=0

α(α − 1) ∙ ∙ ∙ (α − k + 1)
k!

xk + o(xn) = 1 + αx +
α(α − 1)

2!
x2 + ∙ ∙ ∙

+
α(α − 1) ∙ ∙ ∙ (α − n + 1)

n!
xn + o(xn)

(où α désigne un réel)

ex =
n∑

k=0

1
k!

xk + o(xn) = 1 + x +
x2

2!
+ ∙ ∙ ∙ +

xn

n!
+ o(xn)

ch(x) =
n∑

k=0

1
(2k)!

x2k + o(x2n+1) = 1 +
x2

2!
+ ∙ ∙ ∙ +

x2n

(2n)!
+ o(x2n)

sh(x) =
n∑

k=0

1
(2k + 1)!

x2k+1 + o(x2n+2) = x +
x3

3!
+ ∙ ∙ ∙ +

x2n+1

(2n + 1)!
+ o(x2n+1)

cos(x) =
n∑

k=0

(−1)k

(2k)!
x2k + o(x2n+1) = 1 −

x2

2!
+ ∙ ∙ ∙ + (−1)n x2n

(2n)!
+ o(x2n)

sin(x) =
n∑

k=0

(−1)k

(2k + 1)!
x2k+1 + o(x2n+2) = x −

x3

3!
+ ∙ ∙ ∙ + (−1)n x2n+1

(2n + 1)!
+ o(x2n+1)

tan(x) = x +
x3

3
+

2
15

x5 + o(x5)

Table 2.1: Développements limités en 0 des fonctions usuelles
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3 Extrema des fonctions

3.1 Définition

Définition 3.1. Soit f : I → R une fonction définie sur un intervalle de R et soit a ∈ I.
(a) On dit que f présente un maximum global (resp. minimum global) au point a, si

pour tout x ∈ I on a f(x) ≤ f(a) (resp. si pour tout x ∈ I on a f(x) ≥ f(a)).
(b) On dit que f a un maximum local (resp. minimum local) au point a, si on a

f(x) ≤ f(a) (resp. f(x) ≥ f(a)) pour tout x au voisinage de a dans I.
Autrement dit, f a un maximum local (resp. minimum local) en a s’il existe α > 0 tel

que, pour x ∈ I vérifiant |x − a| ≤ α on a f(x) ≤ f(a) (resp. f(x) ≥ f(a)).

Remarque 3.2. (a) Bien sûr, si f présente un maximum (ou minimum) global en a,
alors a fortiori f présente un maximum (ou minimum) local en a.
(b) On parle de maximum ou de minimum local strict en a si l’inégalité stricte f(x) <

f(a), resp. f(x) > f(a), est vraie pour x 6= a au voisinage de a.

Exemple 3.3. (a) La fonction carrée x 7→ x2 présente un minimum global en 0, et c’est
le seul point où elle présente un extremum local
(b) La fonction x 7→ −(x − 1)2 + 3 présente un maximum global en 1.
(c) Soit f : x 7→ x3−x2, définie sur R. Comme lim

x→+∞
f(x) = +∞ et lim

x→−∞
f(x) = −∞,

la fonction f n’a pas de maximum global ni de minimum global sur R. La fonction f est
dérivable et on a f ′(x) = 3x2 − 2x = x(3x − 2) pour tout x ∈ R. L’étude du signe de la
dérivée montre que f est strictement croissante sur les intervalles ]−∞; 0] et [23 ; +∞[ et
strictement décroissante sur [0; 2

3 ], ce qui entraîne que f présente un maximum local en
0 et un minimum local en 2

3 .

Rappel du cours d’Analyse 2 :

Theorem 3.4 (Théorème de Heine). Toute fonction f continue sur un segment [c, d] est
bornée et atteint ses bornes.

Ainsi toute fonction continue sur un segment admet un minimum global et un maxi-
mum global.

3.2 Condition nécessaire et condition suffisante d’extremum
local pour une fonction régulière

3.2.1 Extrema et dérivées premières

Proposition 3.5. Soit f : I → R une fonction définie sur un intervalle de R et soit a un
point intérieur de I (i.e., pas une borne de l’intervalle). On suppose que f dérivable au
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3 Extrema des fonctions

point a. Si f présente un maximum local ou un minimum local au point a, alors f ′(a) = 0.

Démonstration. Supposons que f présente un maximum local en a. Il existe donc α > 0
tel que pour tout x ∈ I ∩ [a−α, a+α] on a f(x) ≤ f(a). Comme a est un point intérieur
de I, quitte à choisir α plus petit si nécessaire, on peut supposer [a−α, a + α] ⊂ I. Pour
x < a, on a

f(x) − f(a)
x − a

≥ 0

et en passant à la limite lorsque x → a avec x < a, on obtient

f ′(a) ≥ 0.

De même pour x > a, on a
f(x) − f(a)

x − a
≤ 0

et en passant à la limite lorsque x → a avec x > a, on obtient

f ′(a) ≤ 0.

D’où f ′(a) = 0.

Remarque 3.6. (a) La réciproque de cette proposition est fausse. Par exemple, la fonc-
tion f : x 7→ x3 vérifie f ′(0) = 0, pourtant cette fonction ne présente pas d’extremum
local en 0.
(b) La proposition ne donne aucune condition nécessaire pour avoir un extremum local

en une borne de l’intervalle I.

Exemple 3.7. Si f(x) = cos(x)+sin(x), alors f est continue sur le segment [0, π] donc y
est bornée et atteint ses bornes. De plus f est dérivable et on a f ′(x) = − sin(x)+cos(x)
pour tout x. Donc f s’annule sur [0, π] en x0 = π/4. On a f(x0) =

√
2, f(0) = 1 et

f(π) = −1. Donc
• le maximum de f sur [0, π] est atteint en π/4 et vaut

√
2,

• son minimum est atteint en π et vaut −1. Il s’agit donc a fortiori d’un minimum
local, mais pourtant f ′(π) 6= 0.

3.2.2 Extrema et dérivées secondes ou d’ordre supérieur

Proposition 3.8. Soit f : I → R une fonction définie sur un intervalle de R et soit a
un point intérieur de I. On suppose que f est deux fois dérivable en a, et que a est un
point critique de f , i.e., f ′(a) = 0. Alors :

• si f ′′(a) > 0, alors f présente un minimum local strict en a,
• si f ′′(a) < 0, alors f présente un maximum local strict en a.

En particulier, si f ′′(a) 6= 0, alors f présente un extremum local en a.

On a en fait une propriété plus générale :
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3.2 Critère pour extremum local

Proposition 3.9. Soit f : I → R une fonction définie sur un intervalle de R et soit a
un point intérieur de I. On suppose que f est n fois dérivable en a (avec n ≥ 2), et que a
est un point critique de f , i.e., f ′(a) = 0. On suppose en outre qu’il existe p ∈ {2, . . . , n}
tel que f (p)(a) 6= 0 et on note par p le plus petit entier vérifiant cela. Alors :

• Si p est pair, alors f présente un extremum local en a, plus précisément si f (p)(a) > 0,
alors f présente un minimum local strict en a, et si f (p)(a) < 0, alors f présente un
maximum local strict en a.

• Si p est impair, alors f ne présente pas d’extremum local en a.

Démonstration. On écrit la formule de Taylor–Young à l’ordre p en a et, puisque f ′(a) =
0, on obtient

f(x) = f(a) +
f (p)(a)

p!
(x − a)p + o((x − a)p).

Alors

f(x) − f(a) ∼a (x − a)p f (p)(a)
p!

et donc, pour x 6= a au voisinage de a, la quantité f(x) − f(a) est de même signe que
f (p)(a)(x − a)p.
Lorsque p est pair : si f (p)(a) > 0, on a l’inégalité f(x) > f(a) au voisinage de a, et

f présente un minimum local strict en a, et si f (p)(a) < 0, on a, dans un voisinage de a,
l’inégalité f(x) < f(a), de sorte que f présente un maximum local strict en a.
Lorsque p est impair : f (p)(a)(x− a)p change de signe en a, donc f(x)− f(a) aussi, ce

qui entraîne qu’il n’y a pas d’extremum local en a dans ce cas.

Exemple 3.10. Si

f(x) = sin3(x) + 2 cos(x) + x2 et g(x) = f(x) − x3,

alors au voisinage de 0, on a

f(x) = (x + o(x2))3 + 2(1 −
x2

2
+

x4

4!
) + x2 = 2 + x3 +

x4

12
+ o(x4)

et

g(x) = 2 +
x4

12
+ o(x4)

donc f n’admet pas d’extremum en 0 mais g admet un minimum local en 0 qui vaut 2.
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4 Fonctions convexes

4.1 Définition

Définition 4.1. Soit f : I → R une fonction définie sur un intervalle de R. On dit que
f est convexe sur I si

∀x, y ∈ I, ∀λ ∈ [0, 1], f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y).

On dit que f est concave si −f est convexe, autrement dit si

∀x, y ∈ I, ∀λ ∈ [0, 1], f(λx + (1 − λ)y) ≥ λf(x) + (1 − λ)f(y).

Interprétation graphique

Les points de coordonnées (x, f(x)) et (y, f(y))
sont deux points de la courbe de f .

En reliant ces deux points par un segment, on
obtient une corde.
Lorsque λ ∈ [0, 1], le point de coordon-
nées (λx + (1 − λ)y, λf(x) + (1 − λ)f(y)) est un
point de cette corde.

L’inégalité de la définition signifie que le point du
graphe de f d’abscisse λx+(1−λ)y est situé en
dessous du point de la corde de même abscisse.

Conclusion : f est convexe si et seulement si le
graphe de f est au dessous de chacune de ses
cordes.

Exemple 4.2. (a) L’application valeur absolue x 7→ |x| est convexe sur R.
[En effet : soient λ ∈ [0, 1], x, y ∈ R. Alors

|λx + (1 − λ)y| ≤ |λx| + |(1 − λ)y| = λ|x| + (1 − λ)|y|

par l’inégalité triangulaire.]
(b) La fonction carré x 7→ x2 est convexe sur R.
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4 Fonctions convexes

[En effet : soient λ ∈ [0, 1], x, y ∈ R. Alors :

λx2 + (1 − λ)y2 − (λx + (1 − λ)y)2 = λx2 + (1 − λ)y2 − λ2x2 − (1 − λ)2y2 − 2λ(1 − λ)xy

= λ(1 − λ)x2 + λ(1 − λ)y2 − 2λ(1 − λ)xy

= λ(1 − λ)(x2 + y2 − 2xy)

= λ(1 − λ)(x − y)2 ≥ 0

car λ ≥ 0 et 1 − λ ≥ 0.]

Lorsque f est convexe, l’inégalité de la Définition 4.1 est en fait vraie pour un nombre
quelconque de variables :

Proposition 4.3 (Inégalité de Jensen). Soit f : I → R une fonction convexe définie sur
un intervalle. Soient n ≥ 1, x1, . . . , xn des points de I et λ1, . . . , λn des réels positifs tels
que

∑n
i=1 λi = 1. Alors

f

(
n∑

i=1

λixi

)

≤
n∑

i=1

λif(xi).

En particulier

f

(
1
n

n∑

i=1

xi

)

≤
1
n

n∑

i=1

f(xi).

Exemple 4.4. En appliquant l’inégalité de Jensen à la fonction carré, on obtient :

∀n ≥ 1, ∀x1, . . . , xn ∈ R,
( n∑

i=1

xi

)2
≤ n

n∑

i=1

x2
i .

Démonstration de la Proposition 4.3. On raisonne par récurrence sur n ≥ 1. Initialisa-
tion : si n = 1, alors λ1 = 1 et la propriété est immédiate. Supposons la propriété vraie
au rang n ≥ 1 et montrons-la au rang n + 1. Soient x1, . . . , xn+1 ∈ I et λ1, . . . , λn+1

des réels positifs tels que λ1 + . . . + λn+1 = 1. Si λn+1 = 1 alors λ1 = . . . = λn = 0
et de nouveau l’inégalité est immédiate. Supposons donc 0 ≤ λn+1 < 1. On pose alors
X =

∑n
i=1

λi
1−λn+1

xi. On écrit

n+1∑

i=1

λixi = (1 − λn+1)X + λn+1xn+1.

On obtient alors

f
( n+1∑

i=1

λixi

)
≤ (1 − λn+1)f(X) + λn+1f(xn+1) (car f est convexe)

≤ (1 − λn+1)
n∑

i=1

λi

1 − λn+1
f(xi) + λn+1f(xn+1)

(par hypothèse de récurrence)

=
n+1∑

i=1

λif(xi).
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4.2 D’autres caractérisations graphiques de la convexité

4.2 D’autres caractérisations graphiques de la convexité

L’épigraphe de f est l’ensemble des points situés sur ou au dessus de la courbe de f ,
donc l’ensemble des points de coordonnées (x, y) avec y ≥ f(x). Une partie A du plan est
dite convexe si, pour tous points M,M ′ dans A, le segment [MM ′] est toujours contenu
dans A.

Proposition 4.5. La fonction f : I → R est convexe si et seulement si son épigraphe
est convexe.

Démonstration. ⇒ : Supposons f convexe. Soient M(x, y) et M ′(x′, y′) deux points de
l’épigraphe de f ; donc y ≥ f(x) et y′ ≥ f(x′). Un point du segment [MM ′] a pour
coordonnées (λx+(1−λ)x′, λy+(1−λ)y′). Pour voir que ce point appartient à l’épigraphe,
on calcule

f(λx + (1 − λ)x′) ≤ λf(x) + (1 − λ)f(x′) ≤ λy + (1 − λ)y′

où la première inégalité provient du fait que f est convexe et la seconde égalité provient
du fait que M et M ′ appartiennent à l’épigraphe.

⇐ : Supposons l’épigraphe de f convexe. Si M et M ′ sont deux points du graphe de f ,
alors le segment [MM ′] est une corde du graphe. L’hypothèse que l’épigraphe est convexe
entraîne que le graphe de f est situé au dessous de la corde [MM ′]. Donc le graphe de
f est situé au dessous de chacune de ses cordes. D’après l’interprétation graphique de la
Définition 4.1, cela entraîne que f est convexe.

Proposition 4.6. Soit f : I → R une fonction définie sur un intervalle. Les conditions
suivantes sont équivalentes :

(i) f est convexe ;
(ii) pour tous a, b, c ∈ I avec a < b < c, on a

(∗)
f(b) − f(a)

b − a
≤

f(c) − f(a)
c − a

≤
f(c) − f(b)

c − b
.
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Remarque 4.7. On a les équivalences :

f(b) − f(a)
b − a

≤
f(c) − f(a)

c − a
⇔ (c − a)(f(b) − f(a)) ≤ (b − a)(f(c) − f(a))

⇔ (c − b)f(a) + (a − c)f(b) + (b − a)f(c) ≥ 0

⇔
f(c) − f(a)

c − a
≤

f(c) − f(b)
c − b

⇔
f(b) − f(a)

b − a
≤

f(c) − f(b)
c − b

donc les trois inégalités contenues dans la formule (∗) sont en fait équivalentes.

Démonstration. On note parM,N,P les points du graphe de f d’abscisses a, b, c, donc les
points de coordonnées (a, f(a)), (b, f(b)), (c, f(c)). L’encadrement (∗) est équivalent à la
propriété d’avoir N au dessous du segment [MP ]. La condition (ii) est donc équivalente à
avoir que le graphe de f est au dessous de chacune de ses cordes. D’après l’interprétation
graphique de la Définition 4.1, cette propriété équivaut à la convexité de f .

4.3 Convexité pour les fonctions régulières

Proposition 4.8. Soit f : I → R une fonction dérivable sur l’intervalle I. Les conditions
suivantes sont équivalentes :
(i) f est convexe ;
(ii) f ′ est croissante ;
(iii) le graphe de f est situé au dessus de ses tangentes.

Démonstration. (i)⇒(iii) : on suppose f convexe. Fixons a ∈ I. On souhaite montrer :

(∗) f(x) ≥ f(a) + f ′(a)(x − a) pour tout x ∈ I.
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Si x = a, l’inégalité est claire. Supposons d’abord x > a. Soit y ∈]a, x[. Par la Proposition
4.6, on a

f(y) − f(a)
y − a

≤
f(x) − f(a)

x − a
.

En faisant tendre y vers a, on déduit

f ′(a) ≤
f(x) − f(a)

x − a

d’où (∗) dans le cas où x > a. Supposons ensuite x < a. Soit y ∈]x, a[. En invoquant
encore la Proposition 4.6, on a

f(a) − f(x)
a − x

≤
f(a) − f(y)

a − y
=

f(y) − f(a)
y − a

.

En faisant tendre y vers a, on déduit

f(a) − f(x)
a − x

≤ f ′(a)

d’où (∗) dans le cas où x < a.
(iii)⇒(ii) : soient a, b ∈ I tels que a < b. Le graphe de f étant situé au dessus de ses

tangentes aux points a et b, on obtient respectivement

f(x) ≥ f(a) + f ′(a)(x − a) et f(x) ≥ f(b) + f ′(b)(x − b)

pour tout x ∈ I. En appliquant la première inégalité pour x = b puis la seconde pour
x = a, on obtient :

f(b) ≥ f(a) + f ′(a)(b − a) et f(a) ≥ f(b) + f ′(b)(a − b)

d’où

f ′(a) ≤
f(b) − f(a)

b − a
≤ f ′(b).

(ii)⇒(i) : on suppose f croissante. Soient a, b, c ∈ I tels que a < b < c. Par le théorème
des accroissements finis il existe a0 ∈]a, b[ et b0 ∈]b, c[ tels que

f(b) − f(a)
b − a

= f ′(a0) et
f(c) − f(b)

c − b
= f ′(b0).

Comme a0 < b0, le fait que f ′ est croissante entraîne f ′(a0) ≤ f ′(b0), donc

f(b) − f(a)
b − a

≤
f(c) − f(b)

c − b
.

D’après la Remarque 4.7 on a donc

f(b) − f(a)
b − a

≤
f(c) − f(a)

c − a
≤

f(c) − f(b)
c − b

.

Cela est vrai quels que soient a, b, c, donc par la Proposition 4.6, f est convexe.
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4 Fonctions convexes

Corollaire 4.9. Soit f : I → R une fonction deux fois dérivable sur l’intervalle I. Les
conditions suivantes sont équivalentes :
(i) f est convexe ;
(ii) f ′′(x) ≥ 0 pour tout x ∈ I.

Exemple 4.10. exp est convexe tandis que ln est concave.
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5 Courbes paramétrées

5.1 Rappel : courbes représentatives des fonctions

Soit f : I → R une fonction définie sur un intervalle. Un repère orthonormé du plan
étant fixé, la courbe représentative de f , notée Cf , est l’ensemble des points de coordonnées
(x, f(x)).
• Si f est continue alors la courbe Cf est connexe (=d’un seul tenant ; formée par une
ligne continue ; on peut la tracer sans lever le crayon).

• Si f est dérivable, alors la courbe admet une tangente en tout point ; au point
d’abscisse a le coefficient directeur de la tangente est f ′(a) (et l’équation est y =
f(a) + f ′(a)(x − a)).

Remarque 5.1. (a) Il n’est pas nécessaire que f soit dérivable pour que la courbe
admette une tangente en tout point. Par exemple, soit f : [0;+∞[→ R, x 7→

√
x. La

fonction f est continue sur [0;+∞[, dérivable sur ]0;+∞[, mais pas dérivable en 0.
Néanmoins la courbe Cf admet une tangente (verticale) en l’origine.
(b) Une courbe Cf représentative d’une fonction ne peut pas avoir deux points ayant

même abscisse x (car x n’a qu’une seule image par f). En particulier, un cercle ne peut
pas être la courbe d’une fonction.

Exemple 5.2. Soit f : [−1; 1] → R, x 7→
√

1 − x2. La courbe Cf est le demi-cercle
supérieur de centre l’origine et rayon 1. La fonction f est dérivable sur ] − 1; 1[ et pour
tout x ∈] − 1; 1[ on a f ′(x) = −2x√

1−x2
. La fonction f n’est pas dérivable en 1 et −1 car

limx→1
f(x)−f(1)

x−1 = −∞ et limx→−1
f(x)−f(−1)

x−(−1) = +∞. La courbe Cf admet des tangentes
verticales aux points d’abscisses 1 et −1.

• D’autres propriétés de la fonction f peuvent s’interpréter graphiquement sur la
courbe Cf :
– Si f est paire, alors Cf est symétrique par rapport à l’axe des ordonnées.
– Si f est impaire, alors Cf est symétrique par rapport à l’axe des abscisses.
– Si f est bijective et g note sa bijection réciproque, alors Cf et Cg sont symétriques
par rapport à la droite d’équation y = x.

5.2 Fonctions à valeurs dans R2

On s’intéresse désormais à des fonctions f : D → R2 définies sur une partie D de R et
à valeurs dans R2. Une telle fonction peut s’écrire :

f(t) = (x(t), y(t)) pour tout t ∈ D
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5 Courbes paramétrées

où x, y : D → R sont appelées fonctions coordonnées.
On peut étendre les notions vues pour les fonctions à valeurs dans R aux fonctions à

valeurs dans R2 :

Définition 5.3. (a) On dit que f est continue en a ∈ D (resp. sur D) si les fonctions
coordonnées x, y sont continues en a ∈ D (resp. sur D).
(b) On dit que f est dérivable en a (resp. sur D) si les fonctions coordonnées x, y sont

dérivables en a (resp. sur D). On note alors f ′(a) = (x′(a), y′(a)) le vecteur dérivé en a.
(c) Plus généralement on dit que f est n fois dérivable (ou de classe Cn) sur D si c’est

le cas des fonctions coordonnées x et y. On note alors f (n)(t) = (x(n)(t), y(n)(t)).

Exemple 5.4. f : R→ R2, t 7→ (cos t, sin t) est une fonction de classe C∞.

5.3 Courbe paramétrée

On fixe un repère orthonormé du plan (O,~i,~j).

Définition 5.5. Un arc paramétré de classe Cn (n ≥ 0) est la donnée d’un couple (I, f)
où I est un intervalle de R et f : I → R2 une fonction de classe Cn.
L’ensemble Cf := f(I), formé par les points Mt de coordonnées f(t) = (x(t), y(t)), est

appelé support de l’arc, ou courbe paramétrée associée. On dit aussi que l’arc f est un
paramétrage de la courbe Cf .

Remarque 5.6. (a) On dira plus simplement "arc paramétré" plutôt que "arc paramétré
de classe C0". D’après cette convention, on se limite à considérer des arcs paramétrés
continus. Cela entraîne que la courbe paramétrée associée est connexe.
(b) On s’autorisera aussi occasionnellement à considérer des arcs paramétrés f : D →

R2 définis sur un ensemble D qui ne soit pas un intervalle mais une réunion d’intervalles.
Dans ce cas la courbe associée ne sera pas connexe en général.
(c) Un arc paramétré est dit simple si l’application f est injective, ce qui signifie que

les points Mt sont tous deux à deux distincts. Une courbe paramétrée est dite simple si
elle admet un paramétrage par un arc paramétré simple.

Exemple 5.7. (a) La courbe représentative Cg d’une fonction g : D → R continue
à valeurs dans R peut être obtenue comme courbe paramétrée, pour l’arc paramétré
f : D → R2, t 7→ (t, g(t)).
(b) La courbe paramétrée associée à f : R → R2, t 7→ (cos t, sin t) est le cercle centré

en l’origine de rayon 1. L’arc paramétré f1 : R → R2, t 7→ (cos(2t), sin(2t)) fournit un
deuxième paramétrage de la même courbe. L’arc f2 : [0; 2π[→ R2, t 7→ (cos(t), sin(t)) est
un troisième paramétrage de la même courbe, qui est simple.

Remarque 5.8. On peut considérer que la courbe paramétrée Cf est la trajectoire d’un
mobile, en fonction du paramètre t qui représente le temps. Ainsi dans l’Exemple 5.7 les
arcs f et f1 correspondent à une même trajectoire, mais dans le cas de f1 la trajectoire
est parcourue deux fois plus vite que pour f .
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5.4 Étude locale : tangente en un point

Dans l’étude d’une courbe paramétrée, on peut utiliser des symétries de la courbe pour
réduire l’intervalle d’étude :
• Si f est T -périodique, alors on peut se limiter à l’étude de f sur un intervalle cor-
respondant à une période, par exemple [0; T [.

• Si pour tout t on observe que le point de coordonnées (−x(t),−y(t)), resp. (x(t),−y(t)),
resp. (−x(t), y(t)), resp. (y(t), x(t)) appartient encore à la courbe, alors cela signifie
que la courbe est symétrique par rapport à l’origine, resp. l’axe des abscisses, resp.
l’axe des ordonnées, resp. la droite d’équation y = x.

Exemple 5.9. Dans le cas de f : R → R2, t 7→ (cos(t), sin(t)), la fonction f étant 2π-
périodique, on peut se limiter à étudier f sur [0; 2π[. Par ailleurs, pour tout t ∈ [0; 2π[ on
remarque que (− cos t,− sin t) = (cos(π+t), sin(π+t)) = f(π+t) donc Cf est symétrique
par rapport à l’origine. On a aussi (sin t, cos t) = f(π

2 − t) donc f est symétrique par
rapport à la droite d’équation y = x. On a de même que f est symétrique par rapport à
l’axe des abscisses et à celui des ordonnées. Au final, pour reconstituer toute la courbe,
il suffit de considérer l’arc paramétré [0; π

4 ] → R2, t 7→ f(t) et appliquer à sa courbe
associée les transformations géométriques décrites ci-dessus.

5.4 Étude locale : tangente en un point

Lorsque la droite (MaMt) admet une position limite lorsque t tend vers a, on dit que
la courbe Cf admet une tangente au point Ma. Remarque : si Ma est un point multiple
de la courbe (i.e. Ma = Mb pour au moins une autre valeur du paramètre b 6= a) alors il
peut y avoir plusieurs tangentes au point Ma.

Définition 5.10. Soit f : I → R2 un arc paramétré et a ∈ I. On dit que le nombre a
est régulier pour f si le vecteur dérivé f ′(a) = (x′(a), y′(a)) est non nul. Sinon, on dit
que a est singulier pour f .

Proposition 5.11. Si a est régulier pour f , alors Cf admet une tangente au point Ma,
de vecteur directeur ~Va = x′(a)~i + y′(a)~j.

Démonstration. Soit t ∈ I \ {a}. Étant donné M(x; y), on a :

M ∈ (MaMt) ⇔

∣
∣
∣
∣

x(t) − x(a) x − x(a)
y(t) − y(a) y − y(a)

∣
∣
∣
∣ = 0 ⇔

x(t) − x(a)
t − a

(y−y(a)) =
y(t) − y(a)

t − a
(x−x(a))

ce qui nous donne l’équation de la droite (MaMt). Lorsque t tend vers a, la droite a
comme position limite la droite d’équation x′(a)(y − y(a)) = y′(a)(x − x(a)) (le fait
d’avoir (x′(a), y′(a)) 6= (0, 0) garantit qu’il s’agit bien là de l’équation d’une droite).
Cette droite est tangente à la courbe au point Ma, et ~Va est un vecteur directeur de cette
droite.

Exemple 5.12. (a) Soit f : R → R2, t 7→ (cos t, sin t). Alors f ′(t) = (− sin t, cos t)
est non nul pour tout t. Donc tout a ∈ R est régulier pour f , et donc le vecteur ~Va =
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5 Courbes paramétrées

−(sin a)~i + (cos a)~j est un vecteur tangent à Cf au point Ma. Remarque : si a = 0 ou
a = π, ce vecteur est vertical, si a = π

2 ou
3π
2 , ce vecteur est horizontal.

(b) Soit f : [0;+∞[→ R, t 7→ (t,
√

t) : cet arc paramétré n’est pas dérivable en 0... En
posant g : [0;+∞[→ R2, t 7→ (t2, t), on obtient néanmoins un paramétrage dérivable (et
même C∞) de la même courbe paramétrée. Pour tout t ∈ [0;+∞[ on a g′(t) = (2t, t) de
sorte que tout nombre a ≥ 0 est régulier pour g. En particulier pour a = 0, on obtient
que ~V0 = ~j est un vecteur tangent (vertical) à la courbe, en l’origine.

En réalité, comme nous allons le voir, il n’est pas nécessaire que a soit régulier pour
que la courbe admette une tangente au point Ma.

5.5 Développements limités des fonctions à valeurs dans R2

Dans la même logique d’étendre les propriétés des fonctions à valeurs dans R aux
fonctions à valeurs dans R2, on a :

Theorem 5.13 (Formule de Taylor Young). Soit f : I → R2, t 7→ (x(t), y(t)) une
fonction deux fois dérivable et soit a ∈ I. On note f (k)(a) = (x(k)(a), y(k)(a)) ∈ R2.
Alors :

f(t) = f(a) + (t − a) ∙ f ′(a) +
(t − a)2

2
∙ f ′′(a) + . . . +

(t − a)n

n!
∙ f (n)(a) + (t − a)n ∙ ε(t)

où ε : I → R2 est une fonction telle que limt→a ε(t) = (0, 0).

Démonstration. Conséquence de la formule de Taylor–Young usuelle, écrite pour chaque
fonction coordonnée.

Exemple 5.14. Soit f(t) = (t+cos(t), t−sin(t)) avec t ∈ R. On cherche le développement
limité de f , d’ordre 3, donné par la formule de Taylor–Young.
On peut aussi écrire directement le développement limité de f (en fait, de chaque

fonction coordonnée) en 0 :

f(t) = (1 + t −
t2

2
+ t3ε1(t),

t3

6
+ t3ε2(t))

= (1, 0) + t(1, 0) +
t2

2
(−1, 0) +

t3

6
(0, 1) + t3 (ε1(t), ε2(t))︸ ︷︷ ︸

ε(t)

.

Par identification, f(0) = (1, 0), f ′(0) = (1, 0), f ′′(0) = (−1, 0), f (3)(0) = (0, 1).

5.6 Étude locale en un point (suite)

On peut maintenant étendre la construction de vecteurs tangents au cas des points
singuliers.
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5.6 Étude locale en un point (suite)

Proposition 5.15. Soit f : I → R2 un arc paramétré de classe Cn, a ∈ I, et sup-
posons qu’il existe p ∈ {1, . . . , n} – que l’on choisit alors minimal – tel que f (p)(a) =
(x(p)(a), y(p)(a)) 6= (0, 0). Alors Cf admet une tangente au point Ma, de vecteur directeur
~Va = x(p)(a)~i + y(p)(a)~j.

Démonstration. On applique la formule de Taylor–Young qui donne :

f(t) = f(a) +
(t − a)p

p!
f (p)(a) + (t − a)pε(t), avec lim

t→a
ε(t) = (0, 0).

Cela entraîne que, pour tout t 6= a, le vecteur

(x(p)(a) + p!ε1(t))~ı + (y(p)(a) + p!ε1(t))~

est un vecteur tangent à la droite (MaMt). En faisant tendre t vers a, ce vecteur tend
vers ~Va, qui est alors tangent à la courbe paramétrée au point Ma.

Exemple 5.16. Si f(t) = (cos3(t), sin3(t)) alors f ′(t) = (−3 sin(t) cos2(t), 3 cos(t) sin2(t))
donc f ′(0) = (0, 0). Pour déterminer un vecteur tangent, on calcule alors f ′′(t) =
(−3 cos3(t) + 6 sin2(t) cos(t),−3 sin3(t) + 6 cos2(t) sin(t)) ainsi f ′′(0) = (−3, 0) 6= (0, 0),
et donc ~V0 = −3~ı est vecteur tangent à la courbe au point M0(1, 0).

En poursuivant le développement limité au delà du rang p, on peut avoir une informa-
tion plus précise sur l’allure de la courbe au voisinage du point Ma. Avec p comme dans la
proposition ci-dessus, on suppose qu’il existe q ∈ {p+1, . . . , n} – que l’on choisit minimal
– tel que f (q)(a) n’est pas colinéaire à f (p)(a) (en particulier il faut avoir f (q)(a) 6= (0, 0)
mais ce n’est pas suffisant en général).
On pose alors ~Wa = x(q)(a)~ı + y(q)(a)~, et on obtient deux vecteurs ~Va, ~Wa non coli-

néaires. On va travailler dans le repère (Ma, ~Va, ~Wa).
La formule de Taylor–Young donne :

f(t) = f(a) +
q−1∑

i=p

(t − a)i

i!
f (i)(a) +

(t − a)q

q!
f (q)(a) + (t − a)qε(t).

Cela entraîne que le vecteur
−→

MaMt peut s’écrire

−→
MaMt= X(t) ~Va + Y (t) ~Wa où X(t) ∼a

(t − a)p

p!
, Y (t) ∼a

(t − a)q

q!
.

Pour t > a (c’est-à-dire après le passage au point Ma), on a X(t) > 0 et Y (t) > 0 donc le
pointMt de la courbe est situé dans la partie du plan formé par les points de coordonnées
positives dans le repère (Ma, ~Va, ~Wa) ; de plus ~Va est un vecteur tangent à la courbe.
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5 Courbes paramétrées

Il y a en tout quatre parties du plan, suivant le signe des coordonnées dans le repère.
Pour t < a il y a quatre configurations possibles :

parité
de p

parité
de q

signe de X(t)
pour t < a

signe de Y (t)
pour t < a

zone de Mt

pour t < a
type de point

impair pair < 0 > 0 zone 2 point ordinaire
impair impair < 0 < 0 zone 3 point d’inflexion

pair impair > 0 < 0 zone 4
rebroussement de
1ère espèce

pair impair > 0 > 0 zone 1
rebroussement de
2ème espèce

Exemple 5.17. (a) Soit f(t) = (t, t3) et étudions le type du point M0(0, 0). On a
f ′(t) = (1, 3t2) donc f ′(0) = (1, 0), ~V0 =~ı, et p = 1. Ensuite f ′′(t) = (0, 6t) de sorte que
f ′′(0) = (0, 0), enfin f (3)(0) = (0, 6) non colinéaire à (1, 0), donc ~W0 = 6~ et q = 3. Ainsi
p et q sont impairs. Donc M0 est un point d’inflexion de la courbe. Comme la courbe
paramétrée associée à f coïncide en fait avec la courbe représentative de la fonction cube,
on retrouve le fait que cette dernière a un point d’inflexion en l’origine.
(b) Soit f(t) = (cos3(t), sin3(t)) comme dans l’exemple précédent. Reprenons cet

exemple en cherchant un développement limité d’ordre 3 (au lieu de calculer les déri-
vées successives comme précédemment) :

cos3(t) =
(
1 −

t2

2
+ o(t3)

)3
= 1 −

3
2
t2 + o(t3)

et sin3(t) = t3 + o(t3) (car sin(t) = t + o(t)), donc

f(t) = (1, 0) +
t2

2
(−1, 0) +

t3

3!
(0, 6) + t3ε(t).

Cela entraîne : p = 2, q = 3, ~V0 = −~ı, ~W0 = 6~, etM0(1, 0) est un point de rebroussement
de première espèce.
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6 Séries numériques à termes positifs

6.1 Généralités sur les séries

Définition 6.1. Soit (un)n≥0 une suite numérique. La série numérique de terme général
un est la suite (Sn)n≥0 définie par

Sn = u1 + u2 + . . . + un =
n∑

k=0

uk pour tout entier n ≥ 0.

On note cette série
∑

un.
On appelle un le terme d’indice n et on appelle Sn la somme partielle d’indice n de la

série
∑

un.

En principe la suite (un) formant les termes de la série peut être une suite à valeurs
réelles ou même complexes, mais dans ce cours on se limite au cas des séries à termes
positifs : un est un réel positif ou nul, pour tout n.

Remarque 6.2. Si la suite (un) n’est définie qu’à partir du rang n0, alors il en est de
même de la série

∑
un, et on a Sn = un0 + . . . + un pour tout n ≥ n0.

Par exemple,
∑ 1

n est la série de terme général
1
n , défini pour n ≥ 1. Pour tout n ≥ 1,

la somme partielle de cette série est donnée par

Sn = 1 +
1
2

+ . . . +
1
n

.

La série
∑ 1

n est appelée série harmonique.

Exemple 6.3. (a) Soit (un)n≥0 la suite définie par un = n pour tout n. Alors la série
∑

n a pour somme partielle Sn = 0 + 1 + . . . + n = n(n+1)
2 .

(b) Soit plus généralement (un)n≥0 une suite arithmétique de la forme un = a + rn

pour tout n ≥ 0. Alors
∑

(a + rn) a pour somme partielle Sn = a(n + 1) + rn(n+1
2 .

(c) Soit q un réel positif différent de 1. La série
∑

qn est appelée série géométrique. La
somme partielle est Sn = 1 + q + . . . + qn = 1−qn+1

1−q .

Remarque 6.4. En général, il n’est pas possible de donner une formule explicite pour la
somme partielle d’une série. Au delà des cas traités dans l’exemple ci-dessus, un autre cas
où un tel calcul est possible est celui de “sommes télescopiques” comme dans l’exemple
suivant.
Soit la série

∑ 1
n(n+1) . On remarque que

1
n(n+1) = 1

n − 1
n+1 . La somme partielle peut

alors se calculer ainsi :

Sn =
n∑

k=1

1
k(k + 1)

=
n∑

k=1

(1
k
−

1
k + 1

)
= 1 −

1
2

+
1
2
−

1
3

+ . . . +
1
n
−

1
n + 1

= 1 −
1

n + 1
.
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6 Séries numériques à termes positifs

6.2 Séries convergentes

Définition 6.5. On dit qu’une série
∑

un est convergente si la somme partielle Sn

admet une limite finie quand n → +∞. Lorsqu’il n’y a pas de limite finie, la série est
dite divergente.
(On dit aussi que la série converge / diverge.)

Cette limite est alors appelée la somme de la série et on la note
+∞∑

n=0

un.

Exemple 6.6. (a) La série
∑

n diverge, puisque Sn = n(n+1)
2 → +∞.

(b) La série géométrique
∑

qn est convergente si et seulement si q ∈ [0, 1[. La somme
de la série est alors :

+∞∑

n=0

qn =
1

1 − q
.

(c) Au vu du calcul de somme partielle effectué dans la Remarque 6.4, la série
∑ 1

n(n+1)
est convergente de somme égale à 1.

On remarque que, si
∑

un converge, autrement dit si Sn tend vers une limite finie `,
alors Sn−1 tend aussi vers `. Il résulte que un = Sn − Sn−1 tend vers 0 :

Proposition 6.7 (Condition nécessaire de convergence). Si la série
∑

un converge, alors
son terme général un tend vers 0 lorsque n → +∞.

Lorsque un ne tend pas vers 0, on dit que
∑

un diverge grossièrement. Par exemple la
série

∑
n diverge grossièrement.

Cette condition nécessaire n’est pas suffisante, comme l’indique l’exemple suivant :

Exemple 6.8. On considère la série
∑

ln n+1
n . On observe que ln n+1

n = ln(n+1)− ln(n)
de sorte que la somme partielle se calcule (via une somme télescopique) :

Sn =
n∑

k=1

(ln(k + 1) − ln(k)) = ln(n + 1) − ln(1) = ln(n + 1) → +∞ si n → +∞

Ainsi la série diverge. Pourtant ln n+1
n → 0 si n → +∞.

Dans le cas qui nous intéresse des séries à termes positifs, la suite des sommes partielles
(Sn)n≥0 est croissante, puisque Sn+1 − Sn = un+1 ≥ 0 pour tout n. Comme (Sn)n≥0 est
croissante, elle a une limite, qui peut être +∞ ou un réel positif. Le second cas se produit
si et seulement si (Sn) est majorée :

Proposition 6.9. Soit
∑

un une série à termes positifs. La série
∑

un converge si et
seulement si la suite (Sn) des sommes partielles est majorée.
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6.3 Critères de comparaison

6.3 Critères de comparaison

Dans cette section, on suppose que
∑

un et
∑

vn sont deux séries à termes positifs.
On note par Sn =

∑n
k=0 uk et Tn =

∑n
k=0 vk leurs sommes partielles respectives.

On a d’abord clairement :

Proposition 6.10. (a) Si
∑

un et
∑

vn convergent, alors
∑

(un + vn) converge, et∑+∞
n=0(un + vn) =

∑+∞
n=0 un +

∑+∞
n=0 vn.

(b) Si
∑

un converge et λ est un réel alors
∑

(λun) converge et
∑+∞

n=0(λun) = λ
∑+∞

n=0 un.

On souhaite maintenant des résultats permettant de comparer la convergence des deux
séries

∑
un et

∑
vn.

Proposition 6.11. Si un ≤ vn pour tout entier n ≥ 0, ou au moins pour tout entier n
à partir d’un certain rang n0, alors :

∑
vn converge ⇒

∑
un converge,

∑
un diverge ⇒

∑
vn diverge.

Démonstration. Il suffit de montrer la première implication, puisque la seconde en est la
contraposée. Supposons que

∑
vn converge. La somme partielle (Tn) est alors majorée :

il existe M > 0 tel que Tn ≤ M pour tout entier n. En utilisant l’hypothèse on a :

∀n ≥ 0, Sn ≤ u0 + . . . + un0−1 + Tn ≤ u0 + . . . + un0−1 + M.

Ainsi (Sn) est majorée et donc
∑

un converge.

Exemple 6.12. La série
∑ 1

n2n est convergente, puisqu’on a 1
n2n ≤ 1

2n pour tout n ≥ 1,
et on sait que la série

∑ 1
2n converge.

On généralise l’énoncé précédent au travers de la relation de prépondérance : on note
un = O(vn) s’il existe un rang n0 et un réel positif M tels que |un| ≤ M |vn| pour tout
n ≥ n0 – ou en fait un ≤ Mvn pour des suites à termes positifs. Lorsque vn 6= 0 pour
tout n, la relation un = O(vn) revient à dire que la suite (un

vn
) est bornée.

Si un = o(vn) ou un ∼ vn alors on a en particulier un = O(vn). En combinant les deux
propositions précédentes, on obtient alors :

Proposition 6.13. (a) Supposons un = O(vn). Alors :

∑
vn converge ⇒

∑
un converge,

∑
un diverge ⇒

∑
vn diverge.

Ces implications ont donc lieu a fortiori si un = o(vn).
(b) Supposons un ∼ vn. Alors les séries

∑
un et

∑
vn sont de même nature.
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6 Séries numériques à termes positifs

Exemple 6.14. (a) On a ln n+1
n = ln(1+ 1

n) ∼ 1
n . Or nous avons vu que la série

∑
ln n+1

n
diverge. Donc la série harmonique

∑ 1
n est divergente.

(b) On a 1
n2 ∼ 1

n(n+1) , or nous avons vu que la série
∑ 1

n(n+1) converge, donc la série∑ 1
n2 est convergente.
(c) Par conséquent la série

∑ 1
nα sera divergente pour tout α < 1 (car on a alors

1
n = o( 1

nα )) et convergente pour tout α > 2 (car alors 1
nα = o( 1

n2 )).

6.4 Séries de Riemann

On complète l’exemple précédent :

Proposition 6.15 (Séries de Riemann). Soit α > 0. La série
∑ 1

nα est convergente si
et seulement si α > 1.

La démonstration s’appuie sur le critère suivant de comparaison série/intégrale.

Proposition 6.16. Soit f : [1, +∞[→ [0, +∞[ une fonction continue, décroissante. La
série

∑
f(n) converge si et seulement si l’intégrale

∫ n
1 f(x) dx a une limite finie lorsque

n → +∞.

Démonstration. La suite (
∫ n
1 f(x) dx) est croissante. Il suffit donc de montrer :

(∗) (Sn) est majorée ⇔ (
∫ n
1 f(x) dx) est majorée

où Sn note la somme partielle d’indice n de la série
∑

f(n).
Observons d’abord que, comme f est décroissante, pour tout entier k ≥ 1, on a

∀x ∈ [k, k + 1], f(k + 1) ≤ f(x) ≤ f(k).

Cela entraîne

∀k ≥ 1, f(k + 1) ≤
∫ k+1

k
f(x) dx ≤ f(k).

En sommant cette relation pour k variant de 1 à n, on obtient alors

Sn+1 − f(1) = f(2) + . . . + f(n + 1) ≤
∫ n+1

1
f(x) dx ≤ f(1) + . . . + f(n) = Sn.

D’où (∗).

Démonstration de la Proposition 6.15. On applique la proposition précédente à la fonc-
tion f : x 7→ 1

xα , qui est décroissante (car α > 0). La convergence de la série de Riemann∑ 1
nα est donc équivalente à la convergente de la suite (

∫ n
1

1
xα dx). Or si α > 1 on a

∫ n

1

1
xα

dx =
[ x−α+1

−α + 1

]n

1
=

n−α+1

−α + 1
−

1
−α + 1

→
1

α − 1
∈ R.

Donc
∑ 1

nα converge lorsque α > 1. On a déjà vu que
∑ 1

nα diverge si α ≤ 1.
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6.5 Critères de d’Alembert et de Cauchy

Proposition 6.17 (Critère de d’Alembert). Soit
∑

un une série à termes strictement
positifs (au moins à partir d’un certain rang).
On suppose que la limite ` := limn→+∞

un+1

un
∈ [0, +∞] existe.

(a) Si ` < 1, alors
∑

un converge.
(b) Si ` > 1, alors

∑
un diverge grossièrement.

(c) Si ` = 1, alors... on ne peut rien dire.

Démonstration. (a) On fixe q tel que ` < q < 1. Il existe alors un rang n0 tel que
un+1

un
≤ q

pour tout n ≥ n0. Alors un ≤ un0q
n−n0 pour tout n ≥ n0, d’où il résulte que la série∑

un converge puisque la série géométrique
∑

qn converge.
(b) On fixe q ∈]1, `[ et il existe alors un rang n0 tel que

un+1

un
≥ q pour tout n ≥ n0.

D’où un ≥ un0q
n−n0 pour tout n ≥ n0, ce qui entraîne un → +∞ quand n → +∞, de

sorte que
∑

un diverge grossièrement.

Exemple 6.18. Considérons la série
∑

un de terme général un = n2

n! pour n ≥ 0. On
calcule

un+1

un
=

(n + 1)2

(n + 1)!
×

n!
n2

=
1

n + 1
×
(
1 +

1
n

)2
→ 0.

Par le critère de d’Alembert, la série
∑

un est convergente.

De manière assez analogue à la règle de d’Alembert, on a :

Proposition 6.19 (Règle de Cauchy). Soit
∑

un une série à termes strictement positifs
(au moins à partir d’un certain rang).
On suppose que la limite ` := limn→+∞ n

√
un ∈ [0, +∞] existe.

(a) Si ` < 1, alors
∑

un converge.
(b) Si ` > 1, alors

∑
un diverge grossièrement.

(c) Si ` = 1, on ne peut rien dire.

Exemple 6.20. Soit
∑

un la série de terme général un = n2

2n . On a n
√

un = n
2
n × 1

2

pour tout n ≥ 1. Or n
2
n = exp( 2

n ln n) → exp(0) = 1 par croissance comparée, donc
lim n

√
un → 1

2 < 1 ce qui, d’après le critère de Cauchy, entraîne que
∑

un converge.
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